On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory

作者: Philip M. Gresho

DOI: 10.1002/FLD.1650110509

关键词: Incompressible flowMathematicsProjection methodContinuity equationNavier–Stokes equationsMass matrixFluid mechanicsMathematical analysisProjection (linear algebra)Finite element method

摘要: Ever since the expansion of finite element method (FEM) into unsteady fluid mechanics, «consistent mass matrix» has been a relevant issue. Applied to time-dependent incompressible Navier-Stokes equations, it virtually demands use implicit time integration methods in which full «velocity-pressure coupling» is also inherent. We re-introduce consistent matrix some semi-implicit projection such way that cost advantage lumped and accuracy are simultaneously realized

参考文章(50)
David Gottlieb, Steven A Orszag, Numerical analysis of spectral methods ,(1977)
R. L. Sani, P. M. Gresho, R. L. Lee, Comparative study of certain finite-element and finite-difference methods in advection-diffusion simulations NASA STI/Recon Technical Report N. ,vol. 77, pp. 19358- ,(1976)
Philip M. Gresho, Stevens T. Chan, Solving the incompressible Navier-Stokes equations using consistent mass and a pressure Poisson equation NASA STI/Recon Technical Report N. ,vol. 89, pp. 15355- ,(1988)
David Gottlieb, Steven A. Orszag, Numerical Analysis of Spectral Methods Society for Industrial and Applied Mathematics. ,(1977) , 10.1137/1.9781611970425
John B Bell, Phillip Colella, Harland M Glaz, A second-order projection method for the incompressible navier-stokes equations Journal of Computational Physics. ,vol. 85, pp. 257- 283 ,(1989) , 10.1016/0021-9991(89)90151-4
A. J. Baker, J. W. Kim, A taylor weak‐statement algorithm for hyperbolic conservation laws International Journal for Numerical Methods in Fluids. ,vol. 7, pp. 489- 520 ,(1987) , 10.1002/FLD.1650070505
J. Donea, S. Giuliani, H. Laval, L. Quartapelle, Finite element solution of the unsteady Navier-Stokes equations by a fractional step method Computer Methods in Applied Mechanics and Engineering. ,vol. 30, pp. 53- 73 ,(1982) , 10.1016/0045-7825(82)90054-8
Roger Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) Archive for Rational Mechanics and Analysis. ,vol. 33, pp. 377- 385 ,(1969) , 10.1007/BF00247696