Structured linear algebra problems in adaptive optics imaging

作者: Johnathan M. Bardsley , Sarah Knepper , James Nagy

DOI: 10.1007/S10444-011-9172-9

关键词: Conjugate gradient methodSingular value decompositionIterative methodMathematicsAlgorithmRegularization (mathematics)Mathematical optimizationKronecker productGeneralized singular value decompositionKronecker deltaTikhonov regularizationApplied mathematicsComputational mathematics

摘要: A main problem in adaptive optics is to reconstruct the phase spectrum given noisy differences. We present an efficient approach solve least-squares minimization resulting from this reconstruction, using either a truncated singular value decomposition (TSVD)-type or Tikhonov-type regularization. Both of these approaches make use Kronecker products and generalized decomposition. The TSVD-type regularization operates as direct method whereas uses preconditioned conjugate gradient type iterative algorithm achieve fast convergence.

参考文章(20)
Golub Gene H. Et.Al, Matrix Computations, 3rd Edition ,(2007)
Joseph W. Goodman, Introduction to Fourier optics ,(1968)
Johnathan M. Bardsley, Wavefront Reconstruction Methods for Adaptive Optics Systems on Ground-Based Telescopes SIAM Journal on Matrix Analysis and Applications. ,vol. 30, pp. 67- 83 ,(2008) , 10.1137/06067506X
David L. Fried, Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements Journal of the Optical Society of America. ,vol. 67, pp. 370- 375 ,(1977) , 10.1364/JOSA.67.000370
Gene H. Golub, Charles F. Van Loan, Matrix computations (3rd ed.) Johns Hopkins University Press. ,(1996)
Sergio Barbero, Jacob Rubinstein, Larry N. Thibos, Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann-Shack sensor. Optics Letters. ,vol. 31, pp. 1845- 1847 ,(2006) , 10.1364/OL.31.001845
Svenja Ettl, Jürgen Kaminski, Markus C. Knauer, Gerd Häusler, Shape reconstruction from gradient data. Applied Optics. ,vol. 47, pp. 2091- 2097 ,(2008) , 10.1364/AO.47.002091
Harrison H. Barrett, Christopher Dainty, David Lara, Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions. Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 24, pp. 391- 414 ,(2007) , 10.1364/JOSAA.24.000391
Brent L. Ellerbroek, Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 19, pp. 1803- 1816 ,(2002) , 10.1364/JOSAA.19.001803
Hongwu Ren, Richard Dekany, Matthew Britton, Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm Applied Optics. ,vol. 44, pp. 2626- 2637 ,(2005) , 10.1364/AO.44.002626