Quantum field theory, gravity and cosmology in a fractal universe

作者: Gianluca Calcagni

DOI: 10.1007/JHEP03(2010)120

关键词: Classical mechanicsLinearized gravityFractal cosmologyPhysicsQuantum field theory in curved spacetimeTheoretical physicsGravitationGeneral relativityQuantum field theoryCosmological constantQuantum gravity

摘要: We propose a model for power-counting renormalizable field theory living in fractal spacetime. The action is Lorentz covariant and equipped with Stieltjes measure. system flows, even classical sense, from an ultraviolet regime where spacetime has Hausdorff dimension 2 to infrared limit coinciding standard D-dimensional theory. discuss the properties of scalar at quantum level. Classically, lives on which exchanges energy-momentum bulk integer topological D. Although observer experiences dissipation, total conserved. spectrum continuum massive modes. gravitational sector Einstein equations are discussed detail, also cosmological backgrounds. find solutions comment their implications early universe.

参考文章(97)
G. F. R. Ellis, M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations. Physical Review D. ,vol. 40, pp. 1804- 1818 ,(1989) , 10.1103/PHYSREVD.40.1804
Dario Benedetti, Fractal properties of quantum spacetime. Physical Review Letters. ,vol. 102, pp. 111303- ,(2009) , 10.1103/PHYSREVLETT.102.111303
Igor Podlubny, B. Nemcovej, Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation arXiv: Classical Analysis and ODEs. ,(2001)
Petr Hořava, Spectral dimension of the universe in quantum gravity at a lifshitz point. Physical Review Letters. ,vol. 102, pp. 161301- ,(2009) , 10.1103/PHYSREVLETT.102.161301
J. J. Giambiagi, Huyghens’ principle in (2n+1) dimensions for nonlocal pseudodifferential operators of the type □α Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields. ,vol. 104, pp. 1841- 1844 ,(1991) , 10.1007/BF02812498
G. 't Hooft, M. Veltman, Regularization and renormalization of gauge fields Nuclear Physics B. ,vol. 44, pp. 189- 213 ,(1972) , 10.1016/0550-3213(72)90279-9
Matt Visser, Lorentz symmetry breaking as a quantum field theory regulator Physical Review D. ,vol. 80, pp. 025011- ,(2009) , 10.1103/PHYSREVD.80.025011
R. Rammal, G. Toulouse, Random walks on fractal structures and percolation clusters Journal de Physique Lettres. ,vol. 44, pp. 13- 22 ,(1983) , 10.1051/JPHYSLET:0198300440101300
Gianluca Calcagni, Detailed balance in Hořava-Lifshitz gravity Physical Review D. ,vol. 81, pp. 044006- ,(2010) , 10.1103/PHYSREVD.81.044006
K Svozil, Quantum field theory on fractal spacetime: a new regularisation method Journal of Physics A. ,vol. 20, pp. 3861- 3875 ,(1987) , 10.1088/0305-4470/20/12/033