A unified framework for discrete spectral clustering

作者: Heng Tao Shen , Fumin Shen , Zi Huang , Yang Yang

DOI:

关键词: Fuzzy clusteringCURE data clustering algorithmMathematicsCluster analysisCorrelation clusteringConstrained clusteringClustering high-dimensional dataMachine learningData stream clusteringCanopy clustering algorithmArtificial intelligence

摘要: Spectral clustering has been playing a vital role in various research areas. Most traditional spectral algorithms comprise two independent stages (i.e., first learning continuous labels and then rounding the learned into discrete ones), which may lead to severe information loss performance degradation. In this work, we study how achieve as well reliably generalize unseen data. We propose unified scheme jointly learns robust out-ofsample prediction functions. Specifically, explicitly enforce transformation on intermediate labels, leads tractable optimization problem with solution. Moreover, further compensate unreliability of integrate an adaptive module l2,p learn function for Extensive experiments conducted data sets have demonstrated superiority our proposal compared existing approaches.

参考文章(29)
Heng Tao Shen, Xiaofang Zhou, Rongrong Ji, Feiping Nie, Yi Yang, Nonnegative spectral clustering with discriminative regularization national conference on artificial intelligence. ,vol. 1, pp. 555- 560 ,(2011)
Heng Huang, Jin Huang, Feiping Nie, Spectral rotation versus K-means in spectral clustering national conference on artificial intelligence. pp. 431- 437 ,(2013)
Rongkai Xia, Lei Du, Yan Pan, Jian Yin, Robust multi-view spectral clustering via low-rank and sparse decomposition national conference on artificial intelligence. pp. 2149- 2155 ,(2014)
Yang Yang, Yi Yang, Heng Tao Shen, Yanchun Zhang, Xiaoyong Du, Xiaofang Zhou, Discriminative Nonnegative Spectral Clustering with Out-of-Sample Extension IEEE Transactions on Knowledge and Data Engineering. ,vol. 25, pp. 1760- 1771 ,(2013) , 10.1109/TKDE.2012.118
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
E. Elhamifar, R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 2765- 2781 ,(2013) , 10.1109/TPAMI.2013.57
Fabio Galasso, Margret Keuper, Thomas Brox, Bernt Schiele, None, Spectral Graph Reduction for Efficient Image and Streaming Video Segmentation computer vision and pattern recognition. pp. 49- 56 ,(2014) , 10.1109/CVPR.2014.14
Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Efficient Graph-Based Image Segmentation International Journal of Computer Vision. ,vol. 59, pp. 167- 181 ,(2004) , 10.1023/B:VISI.0000022288.19776.77
Yang Yang, Zheng-Jun Zha, Yue Gao, Xiaofeng Zhu, Tat-Seng Chua, Exploiting Web Images for Semantic Video Indexing Via Robust Sample-Specific Loss IEEE Transactions on Multimedia. ,vol. 16, pp. 1677- 1689 ,(2014) , 10.1109/TMM.2014.2323014
Heng Tao Shen, Zhenmin Tang, Chunhua Shen, Fumin Shen, Anton van den Hengel, Qinfeng Shi, Hashing on Nonlinear Manifolds IEEE Transactions on Image Processing. ,vol. 24, pp. 1839- 1851 ,(2015) , 10.1109/TIP.2015.2405340