Constructing elliptic curves with given group order over large finite fields

作者: Georg-Johann Lay , Horst G. Zimmer

DOI: 10.1007/3-540-58691-1_64

关键词: Elliptic curveCounting points on elliptic curvesSupersingular elliptic curveEdwards curveHessian form of an elliptic curveComplex multiplicationAlgebraSchoof's algorithmTwists of curvesPure mathematicsMathematics

摘要: A procedure is developed for constructing elliptic curves with given group order over large finite fields. The generality of the construction allows an arbitrary choice parameters involved. For instance, it possible to specify field, or class number endomorphism ring curve. This important various applications in computational theory and cryptography. Moreover, we give a method that yields all representations integer as norm imaginary quadratic field.

参考文章(15)
Alfred Menezes, Isomorphism Classes of Elliptic Curves Over Finite Fields Springer, Boston, MA. pp. 35- 48 ,(1993) , 10.1007/978-1-4615-3198-2_3
Helmut Hasse, Abstrakte begründung der komplexen multiplikation und riemannsche vermutung in funktionenkörpern Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 10, pp. 325- 348 ,(1934) , 10.1007/BF02940685
Max Deuring, Die Klassenkörper der komplexen Multiplikation B.G. Teubner. ,(1958)
François Morain, Building cyclic elliptic curves modulo large primes theory and application of cryptographic techniques. ,vol. 547, pp. 328- 336 ,(1991) , 10.1007/3-540-46416-6_28
Heinrich Weber, Lehrbuch der Algebra Vieweg+Teubner Verlag. ,(1921) , 10.1007/978-3-663-07282-9
Alfred Menezes, Scott Vanstone, Tatsuaki Okamoto, Reducing elliptic curve logarithms to logarithms in a finite field symposium on the theory of computing. pp. 80- 89 ,(1991) , 10.1145/103418.103434