Why is facial expression analysis in the wild challenging

作者: Tobias Gehrig , Hazım Kemal Ekenel

DOI: 10.1145/2531923.2531924

关键词: Support vector machineFace (geometry)Speech recognitionRepresentation (mathematics)Facial expressionTest setDiscrete cosine transformEmotion recognitionPsychologyEmotion classification

摘要: In this paper, we discuss the challenges for facial expression analysis in wild. We studied problems exemplarily on Emotion Recognition Wild Challenge 2013 [3] dataset. performed extensive experiments dataset comparing different approaches face alignment, representation, and classification, as well human performance. It turns out that under close-to-real conditions, especially with co-occurring speech, it is hard even humans to assign emotion labels clips when only taking video into account. Our automatic classification achieved at best a correct rate of 29.81% test set using Gabor features linear support vector machines, which were trained web images. This result 7.06% better than official baseline, additionally incorporates time information.

参考文章(23)
Arman Savran, Neşe Alyüz, Hamdi Dibeklioğlu, Oya Çeliktutan, Berk Gökberk, Bülent Sankur, Lale Akarun, Bosphorus Database for 3D Face Analysis Biometrics and Identity Management. pp. 47- 56 ,(2008) , 10.1007/978-3-540-89991-4_6
M. F. Valstar, M. Mehu, Bihan Jiang, M. Pantic, K. Scherer, Meta-Analysis of the First Facial Expression Recognition Challenge systems man and cybernetics. ,vol. 42, pp. 966- 979 ,(2012) , 10.1109/TSMCB.2012.2200675
Abhinav Dhall, Roland Goecke, Simon Lucey, Tom Gedeon, Collecting Large, Richly Annotated Facial-Expression Databases from Movies IEEE MultiMedia. ,vol. 19, pp. 34- 41 ,(2012) , 10.1109/MMUL.2012.26
Arman Savran, Bulent Sankur, M. Taha Bilge, Regression-based intensity estimation of facial action units Image and Vision Computing. ,vol. 30, pp. 774- 784 ,(2012) , 10.1016/J.IMAVIS.2011.11.008
B. Fasel, Juergen Luettin, Automatic facial expression analysis: a survey Pattern Recognition. ,vol. 36, pp. 259- 275 ,(2003) , 10.1016/S0031-3203(02)00052-3
Xiangxin Zhu, D. Ramanan, Face detection, pose estimation, and landmark localization in the wild computer vision and pattern recognition. pp. 2879- 2886 ,(2012) , 10.1109/CVPR.2012.6248014
Tobias Gehrig, Hazim Kemal Ekenel, Facial action unit detection using kernel partial least squares international conference on computer vision. pp. 2092- 2099 ,(2011) , 10.1109/ICCVW.2011.6130506
Karan Sikka, Abhinav Dhall, Marian Bartlett, Weakly supervised pain localization using multiple instance learning ieee international conference on automatic face gesture recognition. pp. 1- 8 ,(2013) , 10.1109/FG.2013.6553762
Y.-I. Tian, T. Kanade, J.F. Cohn, Recognizing action units for facial expression analysis IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 23, pp. 32- 66 ,(2001) , 10.1109/34.908962
Tobias Gehrig, Hazim Kemal Ekenel, A common framework for real-time emotion recognition and facial action unit detection computer vision and pattern recognition. pp. 1- 6 ,(2011) , 10.1109/CVPRW.2011.5981817