On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals

作者: Fanghua Lin , Changyou Wang

DOI: 10.1007/S11401-010-0612-5

关键词: Hydrodynamic flowBoundary (topology)UniquenessCombinatoricsHarmonic mapRiemannian manifoldMathematicsLiquid crystalHeat flowMathematical analysis

摘要: For any n-dimensional compact Riemannian manifold (M, g) without boundary and another (N, h), the authors establish uniqueness of heat flow harmonic maps from M to N in class C([0, T),W 1,n ). hydrodynamic (u, d) nematic liquid crystals dimensions n = 2 or 3, it is shown that holds for weak solutions provided either (i) 2, u ∈ L ∞ 2 ∩ H 1 , ▿ P 4/3 ▿d ; (ii) C ([0, T), n ), /2 This answers affirmatively question posed by Lin-Lin-Wang. The proofs are very elementary.

参考文章(23)
Kung-Ching Chang, Wei Yue Ding, Rugang Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces Journal of Differential Geometry. ,vol. 36, pp. 507- 515 ,(1992) , 10.4310/JDG/1214448751
J. L. Ericksen, Hydrostatic theory of liquid crystals Archive for Rational Mechanics and Analysis. ,vol. 9, pp. 371- 378 ,(1962) , 10.1007/BF00253358
Fanghua Lin, Junyu Lin, Changyou Wang, Liquid crystal flows in two dimensions Archive for Rational Mechanics and Analysis. ,vol. 197, pp. 297- 336 ,(2010) , 10.1007/S00205-009-0278-X
F. M. Leslie, Some constitutive equations for liquid crystals Archive for Rational Mechanics and Analysis. ,vol. 28, pp. 265- 283 ,(1968) , 10.1007/BF00251810
L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations Communications on Pure and Applied Mathematics. ,vol. 35, pp. 771- 831 ,(1982) , 10.1002/CPA.3160350604
Jean Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace Acta Mathematica. ,vol. 63, pp. 193- 248 ,(1934) , 10.1007/BF02547354
Tao Huang, Changyou Wang, Notes on the regularity of harmonic map systems Proceedings of the American Mathematical Society. ,vol. 138, pp. 2015- 2023 ,(2010) , 10.1090/S0002-9939-10-10344-X
Yunmei Chen, Michael Struwe, Existence and partial regularity results for the heat flow for harmonic maps Mathematische Zeitschrift. ,vol. 201, pp. 83- 103 ,(1989) , 10.1007/BF01161997