作者: Fanghua Lin , Changyou Wang
DOI: 10.1007/S11401-010-0612-5
关键词: Hydrodynamic flow 、 Boundary (topology) 、 Uniqueness 、 Combinatorics 、 Harmonic map 、 Riemannian manifold 、 Mathematics 、 Liquid crystal 、 Heat flow 、 Mathematical analysis
摘要: For any n-dimensional compact Riemannian manifold (M, g) without boundary and another (N, h), the authors establish uniqueness of heat flow harmonic maps from M to N in class C([0, T),W 1,n ). hydrodynamic (u, d) nematic liquid crystals dimensions n = 2 or 3, it is shown that holds for weak solutions provided either (i) 2, u ∈ L ∞ 2 ∩ H 1 , ▿ P 4/3 ▿d ; (ii) C ([0, T), n ), /2 This answers affirmatively question posed by Lin-Lin-Wang. The proofs are very elementary.