The second homology group of current Lie algebras

作者: Pasha Zusmanovich

DOI:

关键词: Pure mathematicsMathematicsKilling formCellular homologyDiscrete mathematicsGraded Lie algebraRelative homologyUniversal enveloping algebraLie conformal algebraAffine Lie algebraAdjoint representation of a Lie algebra

摘要: This is an old paper put here for archeological purposes. We derive a general formula expressing the second homology of Lie algebra form L\otimes A with coefficients in trivial module through $L$, cyclic $A$, and other invariants $L$ $A$. achieved by using Hopf terms its presentation. also similar associated tensor product two associative algebras.

参考文章(7)
B. L. Feigin, B. L. Tsygan, Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras K-Theory, Arithmetic and Geometry. pp. 210- 239 ,(1987) , 10.1007/BFB0078369
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Aziz Haddi, Homologie des algèbres de lie étendues à une algèbre commutative Communications in Algebra. ,vol. 20, pp. 1145- 1166 ,(1992) , 10.1080/00927879208824396
Christian Kassel, A k�nneth formula for the cyclic cohomology of ?/2-graded algebras Mathematische Annalen. ,vol. 275, pp. 683- 699 ,(1986) , 10.1007/BF01459145
M. A. Knus, U. Stammbach, Anwendungen der Homologietheorie der Liealgebren auf Zentralreihen und auf Präsentierungen Commentarii Mathematici Helvetici. ,vol. 42, pp. 297- 306 ,(1967) , 10.1007/BF02564423