Support vector machine-based inspection of solder joints using circular illumination

作者: T.S. Yun , K.J. Sim , H.J. Kim

DOI: 10.1049/EL:20000342

关键词: SolderingIllumination TechniqueJoint (geology)Joint surfaceArtificial intelligenceEngineeringComputer visionSupport vector machineSvm classifier

摘要: A method for inspecting solder joints using support vector machines (SVMs) and a tiered circular illumination technique is proposed. The provides visual information that allows the 3D shape of joint surface to be determined. extracted features are used classify an SVM classifier. Experimental results show effectiveness proposed method.

参考文章(4)
B. Scholkopf, Kah-Kay Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Poggio, V. Vapnik, Comparing support vector machines with Gaussian kernels to radial basis function classifiers IEEE Transactions on Signal Processing. ,vol. 45, pp. 2758- 2765 ,(1997) , 10.1109/78.650102
Tai-Hoon Cho, Young Shik Moon, Sung Han Park, Tae-Hyeon Kim, Visual inspection system for the classification of solder joints Pattern Recognition. ,vol. 32, pp. 565- 575 ,(1999) , 10.1016/S0031-3203(98)00103-4
S.K. Nayar, A.C. Sanderson, L.E. Weiss, D.A. Simon, Specular surface inspection using structured highlight and Gaussian images international conference on robotics and automation. ,vol. 6, pp. 208- 218 ,(1990) , 10.1109/70.54736
Jesús Figueroa Nazuno, Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 Computación y sistemas. ,vol. 4, pp. 189- 192 ,(2000)