Obliquely interacting solitary waves

作者: John W. Miles

DOI: 10.1017/S0022112077000081

关键词: Gravitational waveSuperposition principleNonlinear systemDimensionless quantityMathematical physicsAmplitudeVries equationPhysics

摘要: Nonlinear oblique interactions between two slightly dispersive gravity waves (in particular, solitary waves) of dimensionless amplitudes α1 and α2 (relative to depth) relative inclination 2ϕ (between wave normals) are classified as weak if sin2ϕ α1,2 or strong ϕ2 = O(α1,2). Weak permit superposition the individual solutions Korteweg-de Vries equation in first approximation; interaction term, which is O(α1α2), then determined from these basic solutions.Strong intrinsically nonlinear. It shown that phase-conserving (the sum phases incoming equal outgoing |α2-α1 > (2ϕ)2 but not |α2-α1| (e.g. reflexion problem, for interacting images α1). also singular, sense regular with sech2 profiles yield singular - csch2 profiles, if \[ \psi_{-}< |\psi| < \psi_{+},\quad{\rm where}\quad\psi_{\pm}={\textstyle\frac{1}{2}}\left|(3\alpha_2)^{\frac{1}{2}}\pm(3\alpha_1)^{\frac{1}{2}}\right|. \]Regular appear be impossible within this regime, its end points, |ϕ| ϕ±, associated resonant interactions.

参考文章(10)
Hsing‐Hen Chen, A Bäcklund transformation in two dimensions Journal of Mathematical Physics. ,vol. 16, pp. 2382- 2384 ,(1975) , 10.1063/1.522503
H. E. Moses, A solution of the Korteweg–de Vries equation in a half‐space bounded by a wall Journal of Mathematical Physics. ,vol. 17, pp. 73- 75 ,(1976) , 10.1063/1.522787
Masayuki Oikawa, Nobuo Yajima, Interactions of Solitary Waves –A Perturbation Approach to Nonlinear Systems– Journal of the Physical Society of Japan. ,vol. 34, pp. 1093- 1099 ,(1973) , 10.1143/JPSJ.34.1093
J. G. B. Byatt-Smith, An integral equation for unsteady surface waves and a comment on the Boussinesq equation Journal of Fluid Mechanics. ,vol. 49, pp. 625- 633 ,(1971) , 10.1017/S0022112071002295
Junkichi Satsuma, N-Soliton Solution of the Two-Dimensional Korteweg-deVries Equation Journal of the Physical Society of Japan. ,vol. 40, pp. 286- 290 ,(1976) , 10.1143/JPSJ.40.286
Robert R. Long, The initial-value problem for long waves of finite amplitude Journal of Fluid Mechanics. ,vol. 20, pp. 161- 170 ,(1964) , 10.1017/S0022112064001094
A.C. Scott, F.Y.F. Chu, D.W. McLaughlin, The soliton: A new concept in applied science Proceedings of the IEEE. ,vol. 61, pp. 1443- 1483 ,(1973) , 10.1109/PROC.1973.9296
E. V. Laitone, The second approximation to cnoidal and solitary waves Journal of Fluid Mechanics. ,vol. 9, pp. 430- 444 ,(1960) , 10.1017/S0022112060001201
D. J. Benney, J. C. Luke, On the Interactions of Permanent Waves of Finite Amplitude Journal of Mathematics and Physics. ,vol. 43, pp. 309- 313 ,(1964) , 10.1002/SAPM1964431309