Malware detection on Android smartphones using API class and machine learning

作者: Westyarian , Yusep Rosmansyah , Budiman Dabarsyah

DOI: 10.1109/ICEEI.2015.7352513

关键词: Cross-validationAndroid (operating system)Computer scienceSoftwareMalwareApplication programming interfaceC4.5 algorithmArtificial intelligenceRandom forestSupport vector machineMachine learning

摘要: This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning classify whether an application is benign or malware. Furthermore, we compare classification precision rate from learning. research uses 51 APIs package classes 16 and employs cross validation percentage split test Random Forest, J48, Support Vector Machine algorithms. 412 total samples (205 benign, 207 malware). obtain that the average 91.9%.

参考文章(24)
Yuuki Nishimoto, Naoya Kajiwara, Shinichi Matsumoto, Yoshiaki Hori, Kouichi Sakurai, Detection of Android API Call Using Logging Mechanism within Android Framework international conference on security and privacy in communication systems. pp. 393- 404 ,(2013) , 10.1007/978-3-319-04283-1_25
Matthew A. Bishop, The Art and Science of Computer Security Addison-Wesley Longman Publishing Co., Inc.. ,(2002)
N. Tawbi, M. Debbabi, J. Desharnais, Y. Lavoie, J. Bergeron, M. M. Erhioui, Static Detection of Malicious Code in Executable Programs ,(2000)
C. Cifuentes, A. Fraboulet, Intraprocedural static slicing of binary executables international conference on software maintenance. pp. 188- 195 ,(1997) , 10.1109/ICSM.1997.624245
S. Y. Yerima, S. Sezer, G. McWilliams, I. Muttik, A New Android Malware Detection Approach Using Bayesian Classification advanced information networking and applications. pp. 121- 128 ,(2013) , 10.1109/AINA.2013.88
Ugur Pehlivan, Nuray Baltaci, Cengiz Acarturk, Nazife Baykal, The analysis of feature selection methods and classification algorithms in permission based Android malware detection 2014 IEEE Symposium on Computational Intelligence in Cyber Security (CICS). pp. 1- 8 ,(2014) , 10.1109/CICYBS.2014.7013371
Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, Sahin Albayrak, An Android Application Sandbox system for suspicious software detection international conference on malicious and unwanted software. pp. 55- 62 ,(2010) , 10.1109/MALWARE.2010.5665792
Takamasa Isohara, Keisuke Takemori, Ayumu Kubota, Kernel-based Behavior Analysis for Android Malware Detection computational intelligence and security. pp. 1011- 1015 ,(2011) , 10.1109/CIS.2011.226
Naser Peiravian, Xingquan Zhu, Machine Learning for Android Malware Detection Using Permission and API Calls international conference on tools with artificial intelligence. pp. 300- 305 ,(2013) , 10.1109/ICTAI.2013.53
Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, Kuo-Ping Wu, DroidMat: Android Malware Detection through Manifest and API Calls Tracing information security. pp. 62- 69 ,(2012) , 10.1109/ASIAJCIS.2012.18