Regular variation, tological dynamics, and the uniform boundedness theorem

作者: Adam Ostaszewski

DOI:

关键词: Discrete mathematicsUniform boundednessTopological quantum numberTopological groupTopological algebraUniform boundedness principleMathematicsTopological vector spaceTopological ringMetrization theorem

摘要: In the metrizable topological groups context, a semi-direct product construction provides canonical multiplicative representation for arbitrary continuous flows. This implies, modulo metric differences, equivalence of natural flow formalization regular variation N. H. Bingham and A. J. Ostaszewski in [Topological variation: I. Slow variation, [to appear Topology its Applications]with B. Bajsanski Karamata group formulation [Regularly varying functions principle egui-continuity, Publ. Ramanujan Inst. 1 (1968/1969), 235-246]. consequence, theorems concerning subgroup actions may be lifted to setting. Thus, Bajsanski-Karamata Uniform Boundedness Theorem (UBT), as it applies cocycles Baire cases, reformulated refined hold under Baire-style Caratheodory conditions. Its connection classical UBT, due Stefan Banach Hugo Steinhaus, is clarified. An application algebras given.

参考文章(31)
Ronald Brown, From Groups to Groupoids: a Brief Survey Bulletin of the London Mathematical Society. ,vol. 19, pp. 113- 134 ,(1987) , 10.1112/BLMS/19.2.113
J. J. Levin, The qualitative behavior of a nonlinear Volterra equation Proceedings of the American Mathematical Society. ,vol. 16, pp. 711- 718 ,(1965) , 10.1090/S0002-9939-1965-0190669-0
M. R. Mehdi, On Convex Functions Journal of the London Mathematical Society. ,vol. s1-39, pp. 321- 326 ,(1964) , 10.1112/JLMS/S1-39.1.321
N.H. Bingham, A.J. Ostaszewski, The Index Theorem of topological regular variation and its applications Journal of Mathematical Analysis and Applications. ,vol. 358, pp. 238- 248 ,(2009) , 10.1016/J.JMAA.2009.03.071
N.H. Bingham, A.J. Ostaszewski, Topological regular variation: II. The fundamental theorems Topology and its Applications. ,vol. 157, pp. 2014- 2023 ,(2010) , 10.1016/J.TOPOL.2010.04.003
Robert J Sacker, George R Sell, Existence of dichotomies and invariant splittings for linear differential systems, II☆ Journal of Differential Equations. ,vol. 22, pp. 478- 496 ,(1976) , 10.1016/0022-0396(76)90042-5
N. H. Bingham, A. J. Ostaszewski, Beyond Lebesgue and Baire: generic regular variation Colloquium Mathematicum. ,vol. 116, pp. 119- 138 ,(2009) , 10.4064/CM116-1-6
N. H. Bingham, A. J. Ostaszewski, Normed versus topological groups: Dichotomy and duality Dissertationes Mathematicae. ,vol. 472, pp. 1- 138 ,(2010) , 10.4064/DM472-0-1
Nathan Jacobson, Lectures in abstract algebra ,(1951)