A free-formulation-based flat shell element for non-linear analysis of thin composite structures

作者: E. Madenci , A. Barut

DOI: 10.1002/NME.1620372206

关键词: Finite element methodElement (category theory)Composite numberMathematicsMathematical modelMathematical analysisNumerical analysisGeometryMixed finite element methodStructural mechanicsNonlinear systemGeneral EngineeringApplied mathematics

摘要: … In the case of doubly curved shell surfaces, recent efforts involve two … a flat triangular element based on the free-formulation for predicting the response of laminated thin composite shells…

参考文章(17)
H. Kebari, A. C. Cassell, A stabilized 9‐node non‐linear shell element International Journal for Numerical Methods in Engineering. ,vol. 35, pp. 37- 61 ,(1992) , 10.1002/NME.1620350104
Alexander Tessler, Thomas J.R. Hughes, A three-node mindlin plate element with improved transverse shear Computer Methods in Applied Mechanics and Engineering. ,vol. 50, pp. 71- 101 ,(1985) , 10.1016/0045-7825(85)90114-8
Klaus-Jürgen Bathe, Ekkehard Ramm, Edward L. Wilson, Finite element formulations for large deformation dynamic analysis International Journal for Numerical Methods in Engineering. ,vol. 9, pp. 353- 386 ,(1975) , 10.1002/NME.1620090207
P. G. Bergan, M. K. Nygård, Finite elements with increased freedom in choosing shape functions International Journal for Numerical Methods in Engineering. ,vol. 20, pp. 643- 663 ,(1984) , 10.1002/NME.1620200405
P.G. Bergan, C.A. Felippa, A triangular membrane element with rotational degrees of freedom Computer Methods in Applied Mechanics and Engineering. ,vol. 50, pp. 25- 69 ,(1985) , 10.1016/0045-7825(85)90113-6
Klaus-Jürgen Bathe, Lee-Wing Ho, A simple and effective element for analysis of general shell structures Computers & Structures. ,vol. 13, pp. 673- 681 ,(1981) , 10.1016/0045-7949(81)90029-8
Sunil Saigal, Rakesh K. Kapania, T.Y. Yang, Geometrically Nonlinear Finite Element Analysis of Imperfect Laminated Shells Journal of Composite Materials. ,vol. 20, pp. 197- 214 ,(1986) , 10.1177/002199838602000206