Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map☆

作者: Yongxiang Zhang , Guanwei Luo

DOI: 10.1016/J.PHYSLETA.2013.03.027

关键词: BifurcationGeometryPhysicsStructural basinBoundary (topology)

摘要: Abstract The partially Wada basin boundaries are referred to the coexistence of points and non-Wada in same boundary. We demonstrate two types bifurcations analyze transitions from totally basins a two-dimensional cubic map. describe some numerical experiments giving evidence boundaries. Our results show that cell erosion bifurcation can induce boundary metamorphoses.

参考文章(21)
Ying-Cheng Lai, Tamás Tél, Ying-Cheng Lai, Tamás Tél, Fractal Basin Boundaries Transient Chaos. pp. 147- 185 ,(2011) , 10.1007/978-1-4419-6987-3_5
David Sweet, Edward Ott, James A. Yorke, Topology in chaotic scattering Nature. ,vol. 399, pp. 315- 316 ,(1999) , 10.1038/20573
John W. Milnor, Remarks on iterated cubic maps Experimental Mathematics. ,vol. 1, pp. 5- 24 ,(1992)
Yongxiang Zhang, Guanwei Luo, Unpredictability of the Wada property in the parameter plane Physics Letters A. ,vol. 376, pp. 3060- 3066 ,(2012) , 10.1016/J.PHYSLETA.2012.08.015
Helena E. Nusse, James A. Yorke, Wada basin boundaries and basin cells Physica D: Nonlinear Phenomena. ,vol. 90, pp. 242- 261 ,(1996) , 10.1016/0167-2789(95)00249-9
Steven W. McDonald, Celso Grebogi, Edward Ott, James A. Yorke, Fractal basin boundaries Physica D: Nonlinear Phenomena. ,vol. 17, pp. 125- 153 ,(1985) , 10.1016/0167-2789(85)90001-6
Judy Kennedy, James A. Yorke, Basins of Wada Physica D: Nonlinear Phenomena. ,vol. 51, pp. 213- 225 ,(1991) , 10.1016/0167-2789(91)90234-Z
LEON POON, JOSÉ CAMPOS, EDWARD OTT, CELSO GREBOGI, Wada Basin Boundaries in Chaotic Scattering International Journal of Bifurcation and Chaos. ,vol. 06, pp. 251- 265 ,(1996) , 10.1142/S0218127496000035
Y. Yamaguchi, N. Mishima, Fractal basin boundary of a two-dimensional cubic map Physics Letters A. ,vol. 109, pp. 196- 200 ,(1985) , 10.1016/0375-9601(85)90301-9