Euler diagram generation

作者: J. Flower , A. Fish , J. Howse

DOI: 10.1016/J.JVLC.2008.01.004

关键词: Euler diagramElementary diagramCommunication diagramClass diagramComputer scienceTheoretical computer scienceTiming diagramUML state machineSpider diagramSystem context diagram

摘要: Euler diagrams form the basis of many diagrammatic notations used to represent set theoretic relationships in a wide range contexts including: file system information, statistical data representation, object-oriented modeling, logical specification and reasoning systems, database search queries. An abstract diagram is formal description information that be displayed as concrete (or drawn) diagram. If can visualized, whilst satisfying certain desirable visual properties (called well-formedness conditions), then we say drawable. We solve drawability problem for given conditions, identifying which classify drawable or undrawable. Furthermore, present high level algorithm enables generation from an diagram, whenever it

参考文章(35)
Casimir Kuratowski, Sur le problème des courbes gauches en Topologie Fundamenta Mathematicae. ,vol. 15, pp. 271- 283 ,(1930) , 10.4064/FM-15-1-271-283
Oliver Lemon, I Pratt, Spatial logic and the complexity of diagrammatic reasoning Machine graphics & vision. ,vol. 6, pp. 89- 108 ,(1997)
John Howse, Fernando Molina, Sun-Joo Shin, John Taylor, On Diagram Tokens and Types Diagrammatic Representation and Inference. pp. 146- 160 ,(2002) , 10.1007/3-540-46037-3_18
Jean Flower, Judith Masthoff, Gem Stapleton, Generating readable proofs: A heuristic approach to theorem proving with spider diagrams Lecture Notes in Computer Science. pp. 166- 181 ,(2004) , 10.1007/978-3-540-25931-2_17
Jean Flower, John Howse, Generating Euler Diagrams Diagrammatic Representation and Inference. pp. 61- 75 ,(2002) , 10.1007/3-540-46037-3_6
Eric M. Hammer, Logic and Visual Information ,(1995)
Anne Verroust, Marie-Luce Viaud, Ensuring the drawability of extended Euler diagrams for up to 8 sets Lecture Notes in Computer Science. pp. 128- 141 ,(2004) , 10.1007/978-3-540-25931-2_13
Sun-Joo Shin, The Logical Status of Diagrams ,(2009)