On convexity of H/sup infinity / Riccati solutions

作者: X.P. Li , B.C. Chang

DOI: 10.1109/CDC.1991.261751

关键词: Norm (mathematics)Convex functionLinear-quadratic-Gaussian controlAlgebraic Riccati equationConvexitySpectral radiusMathematicsApplied mathematicsMathematical analysisQuadratic growthRiccati equation

摘要: The authors revealed several important eigen properties of the stabilizing solutions two H/sup infinity / Riccati equations and their product. Among them, most prominent one is that spectral radius product these a continuous, nonincreasing, convex function gamma in domain interest. Based on properties, quadratically convergent algorithms are developed to compute optimal norm. Two examples used illustrate algorithms. >

参考文章(11)
B-C Chang, X.P. Li, H. H. Yeh, S. S. Banda, Computation of the H∞ norm of a transfer function 1990 American Control Conference. pp. 2578- 2582 ,(1990) , 10.23919/ACC.1990.4791190
D.S. Bernstein, W.M. Haddad, LQG control with an H/sup infinity / performance bound: a Riccati equation approach IEEE Transactions on Automatic Control. ,vol. 34, pp. 293- 305 ,(1989) , 10.1109/9.16419
B.C. Chang, X.P. Li, S.S. Banda, H.H. Yeh, Design of an H/sup infinity / optimal controller by using DGKF's state-space formulas conference on decision and control. pp. 2632- 2633 ,(1990) , 10.1109/CDC.1990.203439
B.C. Chang, X.P. Li, H.H. Yeh, S.S. Banda, Iterative computation of the optimal H/sup infinity / norm by using two-Riccati-equation method conference on decision and control. pp. 2634- 2635 ,(1990) , 10.1109/CDC.1990.203441
J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to standard H/sub 2/ and H/sub infinity / control problems IEEE Transactions on Automatic Control. ,vol. 34, pp. 831- 847 ,(1989) , 10.1109/9.29425
A.C.M. Ran, R. Vreugdenhil, Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems Linear Algebra and its Applications. ,vol. 99, pp. 63- 83 ,(1988) , 10.1016/0024-3795(88)90125-5
P. Pandey, C. Kenney, A.J. Laub, A. Packard, Algorithms for computing the optimal H/sub infinity / norm conference on decision and control. pp. 2628- 2629 ,(1990) , 10.1109/CDC.1990.203347
I Postlethwaite, DW Gu, SD O'Young, None, Some computational results on size reduction in H/sup infinity / design IEEE Transactions on Automatic Control. ,vol. 33, pp. 177- 185 ,(1988) , 10.1109/9.385