Severe sepsis mortality prediction with logistic regression over latent factors

作者: Vicent J. Ribas , Alfredo Vellido , Juan Carlos Ruiz-Rodríguez , Jordi Rello

DOI: 10.1016/J.ESWA.2011.08.054

关键词: Emergency medicineSevere sepsisAcquired immunodeficiency syndrome (AIDS)SepsisSeptic shockMortality predictionIntensive care unitLogistic regressionMortality rateMedicine

摘要: Sepsis is one of the main causes death for non-coronary ICU (Intensive Care Unit) patients and has become 10th most common cause in western societies. This a transversal condition affecting immunocompromised patients, critically ill post-surgery with AIDS, elderly. In countries, septic account as much 25% bed utilization pathology affects 1-2% all hospitalizations. Its mortality rates range from 12.8% sepsis to 45.7% shock. The prediction caused by is, therefore, relevant research challenge medical viewpoint. clinical indicators currently use this type have been criticized their poor prognostic significance. study, we redescribe through latent model-based feature extraction, using factor analysis. These extracted are then applied sepsis. reported results show that proposed method improves on obtained current standard predictor, which based APACHE II score.

参考文章(35)
Jean-Roger Le Gall, Janelle Klar, Stanley Lemeshow, How to Assess Organ Dysfunction in the Intensive Care Unit? The Logistic Organ Dysfunction (LOD) System Sepsis. ,vol. 1, pp. 45- 47 ,(1997) , 10.1023/A:1009763318321
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
J. Paetz, R. Brause, F. Hamker, Septic Shock Diagnosis by Neural Networks and Rule Based Systems Physica, Heidelberg. pp. 323- 356 ,(2002) , 10.1007/978-3-7908-1788-1_12
J. -L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonça, H. Bruining, C. K. Reinhart, P. M. Suter, L. G. Thijs, The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Medicine. ,vol. 22, pp. 707- 710 ,(1996) , 10.1007/BF01709751
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
Paulo JG Lisboa, Alfredo Vellido, Roberto Tagliaferri, Francesco Napolitano, Michele Ceccarelli, José D Martín-Guerrero, Elia Biganzoli, None, Data Mining in Cancer Research [Application Notes] IEEE Computational Intelligence Magazine. ,vol. 5, pp. 14- 18 ,(2010) , 10.1109/MCI.2009.935311
Francesca Rubulotta, John C. Marshall, Graham Ramsay, David Nelson, Mitchell Levy, Mark Williams, Predisposition, insult/infection, response, and organ dysfunction: A new model for staging severe sepsis Critical Care Medicine. ,vol. 37, pp. 1329- 1335 ,(2009) , 10.1097/CCM.0B013E31819D5DB1
Andrés Esteban, Fernando Frutos-Vivar, Niall D. Ferguson, Oscar Peñuelas, José Ángel Lorente, Federico Gordo, Teresa Honrubia, Alejandro Algora, Alejandra Bustos, Gema García, Inmaculada Rodríguez Diaz-Regañón, Rafael Ruiz de Luna, Sepsis incidence and outcome : Contrasting the intensive care unit with the hospital ward Critical Care Medicine. ,vol. 35, pp. 1284- 1289 ,(2007) , 10.1097/01.CCM.0000260960.94300.DE
Jean-Louis Vincent, Dear SIRS, I'm sorry to say that I don't like you... Critical Care Medicine. ,vol. 25, pp. 372- 374 ,(1997) , 10.1097/00003246-199702000-00029
WILLIAM A. KNAUS, ELIZABETH A. DRAPER, DOUGLAS P. WAGNER, JACK E. ZIMMERMAN, Prognosis in acute organ-system failure. Annals of Surgery. ,vol. 202, pp. 685- 693 ,(1985) , 10.1097/00000658-198512000-00004