作者: Bernt Tore Jensen , Xiuping Su
DOI: 10.1112/JLMS.12269
关键词: Lie algebra 、 Discrete mathematics 、 Type (model theory) 、 Counterexample 、 Orbit (control theory) 、 Pure mathematics 、 Mathematics 、 Quiver 、 Nilpotent 、 Representation theory 、 Group (mathematics)
摘要: Seaweed Lie algebras are a natural generalisation of parabolic subalgebras reductive algebras. The well-known Richardson Theorem says that the adjoint action group has dense open orbit in nilpotent radical its algebra \cite{richardson}. We call elements elements. In \cite{JSY} together with Yu, we generalized Richardson's and showed exist for seaweed type $\mathbb{A}$. Using GAP, checked all exceptional simple except $\mathbb{E}_8$, where found counterexample. In this paper, complete story on seaweeds finite type, by showing they any $\mathbb{B}$, $\mathbb{C}$ $\mathbb{D}$. By decomposing into sum analysing their stabilisers, obtain sufficient condition existence Richarson is then verified using quiver representation theory. More precisely, categorical construction $\mathbb{A}$, prove satisfied $\mathbb{D}$, two special cases, give directproof.