Existence of Richardson elements in seaweed Lie algebras of type $\mathbb{B}$, $\mathbb{C}$ and $\mathbb{D}$

作者: Bernt Tore Jensen , Xiuping Su

DOI: 10.1112/JLMS.12269

关键词: Lie algebraDiscrete mathematicsType (model theory)CounterexampleOrbit (control theory)Pure mathematicsMathematicsQuiverNilpotentRepresentation theoryGroup (mathematics)

摘要: Seaweed Lie algebras are a natural generalisation of parabolic subalgebras reductive algebras. The well-known Richardson Theorem says that the adjoint action group has dense open orbit in nilpotent radical its algebra \cite{richardson}. We call elements elements. In \cite{JSY} together with Yu, we generalized Richardson's and showed exist for seaweed type $\mathbb{A}$. Using GAP, checked all exceptional simple except $\mathbb{E}_8$, where found counterexample. In this paper, complete story on seaweeds finite type, by showing they any $\mathbb{B}$, $\mathbb{C}$ $\mathbb{D}$. By decomposing into sum analysing their stabilisers, obtain sufficient condition existence Richarson is then verified using quiver representation theory. More precisely, categorical construction $\mathbb{A}$, prove satisfied $\mathbb{D}$, two special cases, give directproof.

参考文章(19)
Thomas Brüstle, Lutz Hille, Claus Michael Ringel, Gerhard Röhrle, None, The Δ-Filtered Modules Without Self-Extensions for the Auslander Algebra of k[ T ]/〈 T n 〉 Algebras and Representation Theory. ,vol. 2, pp. 295- 312 ,(1999) , 10.1023/A:1009999006899
Alexandre Kirillov, Vladimir Dergachev, Index of Lie algebras of seaweed type. Journal of Lie Theory. ,vol. 10, pp. 331- 343 ,(2000)
Thomas Brüstle, Lutz Hille, None, Matrices over upper triangular bimodules and Δ-filtered modules over quasi-hereditary algebras Colloquium Mathematicum. ,vol. 83, pp. 295- 303 ,(2000) , 10.4064/CM-83-2-295-303
Karin Baur, Karin Erdmann, Alison Parker, D-filtered modules and nilpotent orbits of a parabolic subgroup in On Journal of Pure and Applied Algebra. ,vol. 215, pp. 885- 901 ,(2011) , 10.1016/J.JPAA.2010.06.032
Karin Baur, Anne Moreau, QUASI-REDUCTIVE (BI)PARABOLIC SUBALGEBRAS IN REDUCTIVE LIE ALGEBRAS. Annales de l'Institut Fourier. ,vol. 61, pp. 417- 451 ,(2011) , 10.5802/AIF.2619
Anthony Joseph, On semi-invariants and index for biparabolic (seaweed) algebras, II☆ Journal of Algebra. ,vol. 305, pp. 158- 193 ,(2006) , 10.1016/J.JALGEBRA.2005.12.029
Patrice Tauvel, Rupert W. T. Yu, Affine Slice for the Coadjoint Action of a Class of Biparabolic Subalgebras of a Semisimple Lie Algebra Algebras and Representation Theory. ,vol. 16, pp. 859- 872 ,(2013) , 10.1007/S10468-012-9335-5
Anthony Joseph, An algebraic slice in the coadjoint space of the Borel and the Coxeter element Advances in Mathematics. ,vol. 227, pp. 522- 585 ,(2011) , 10.1016/J.AIM.2011.02.006
Karin Baur, Richardson elements for classical Lie algebras Journal of Algebra. ,vol. 297, pp. 168- 185 ,(2006) , 10.1016/J.JALGEBRA.2005.03.033