Characterization of Bio-Inspired Synthetic Hair Cell Sensors

作者: Ezra Jampole , Noël Spurgeon , Trevor Avant , Kevin Farinholt

DOI: 10.1007/978-1-4614-2419-2_13

关键词: Boundary value problemHair cellMembraneCapacitanceBiological systemLipid bilayerFinite element methodMaterials scienceStiffnessElectrode

摘要: Recently, researchers at Virginia Tech have developed biologically-inspired hair cell sensors that utilize the transport mechanism between cells to sense a variety of physical inputs. The consist hair-like, hydrogel-supported structure is encapsulated in lipid bilayer membrane. membrane itself capable producing change capacitance when excited, which measured by electrodes mounted base cell. This paper presents results modeling dynamic response synthetic for boundary conditions and non-contact excitation methods so can be related electrical output sensor. A finite element analysis performed rigid mounting conditions, then altered account varying degrees stiffness medium hair. model subsequently validated using high-speed imaging techniques closed-form solution. used characterize behavior sensor due excitation, such as excitation.

参考文章(12)
Patrick D. McGary, Liwen Tan, Jia Zou, Bethanie J. H. Stadler, Patrick R. Downey, Alison B. Flatau, Magnetic nanowires for acoustic sensors (invited) Journal of Applied Physics. ,vol. 99, ,(2006) , 10.1063/1.2167332
Stephen A. Sarles, John D. W. Madden, Donald J. Leo, Hair cell inspired mechanotransduction with a gel-supported, artificial lipid membrane Soft Matter. ,vol. 7, pp. 4644- 4653 ,(2011) , 10.1039/C1SM05120B
P. R. Downey, A. B. Flatau, Magnetoelastic bending of Galfenol for sensor applications Journal of Applied Physics. ,vol. 97, ,(2005) , 10.1063/1.1853838
Christelle Magal, Olivier Dangles, Philippe Caparroy, Jérôme Casas, Hair canopy of cricket sensory system tuned to predator signals. Journal of Theoretical Biology. ,vol. 241, pp. 459- 466 ,(2006) , 10.1016/J.JTBI.2005.12.009
Nannan Chen, Craig Tucker, Jonathan M Engel, Yingchen Yang, Saunvit Pandya, Chang Liu, None, Design and Characterization of Artificial Haircell Sensor for Flow Sensing With Ultrahigh Velocity and Angular Sensitivity IEEE\/ASME Journal of Microelectromechanical Systems. ,vol. 16, pp. 999- 1014 ,(2007) , 10.1109/JMEMS.2007.902436
T. Steinmann, J. Casas, G. Krijnen, O. Dangles, Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages. The Journal of Experimental Biology. ,vol. 209, pp. 4398- 4408 ,(2006) , 10.1242/JEB.02506
Fei Li, Weiting Liu, Cesare Stefanini, Xin Fu, Paolo Dario, A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System Sensors. ,vol. 10, pp. 994- 1011 ,(2010) , 10.3390/S100100994
S. Peleshanko, M. D. Julian, M. Ornatska, M. E. McConney, M. C. LeMieux, N. Chen, C. Tucker, Y. Yang, C. Liu, J. A. C. Humphrey, V. V. Tsukruk, Hydrogel‐Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast Advanced Materials. ,vol. 19, pp. 2903- 2909 ,(2007) , 10.1002/ADMA.200701141
Hisayo Yamaoka, Hirotaka Asato, Toru Ogasawara, Satoru Nishizawa, Tsuguharu Takahashi, Takashi Nakatsuka, Isao Koshima, Kozo Nakamura, Hiroshi Kawaguchi, Ung-il Chung, Tsuyoshi Takato, Kazuto Hoshi, Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials Journal of Biomedical Materials Research Part A. ,vol. 78, pp. 1- 11 ,(2006) , 10.1002/JBM.A.30655
J.M. Engel, J. Chen, C. Liu, D. Bullen, Polyurethane rubber all-polymer artificial hair cell sensor IEEE\/ASME Journal of Microelectromechanical Systems. ,vol. 15, pp. 729- 736 ,(2006) , 10.1109/JMEMS.2006.879373