Dressing transformations and Poisson group actions

作者: Michael A. Semenov-Tian-Shansky

DOI: 10.2977/PRIMS/1195178514

关键词: Mathematical analysisPoisson bracketLaplace's equationDiscrete Poisson equationUniqueness theorem for Poisson's equationPoisson distributionSolitonPoisson's equationMathematicsPoisson–Lie group

摘要: … one would expect that dressing transformation group preserves … to decide whether the dressing transformation group survives … the Poisson properties of dressing transformations. The …

参考文章(7)
Alan Weinstein, The local structure of Poisson manifolds Journal of Differential Geometry. ,vol. 18, pp. 523- 557 ,(1983) , 10.4310/JDG/1214437787
Graeme Segal, George Wilson, Loop groups and equations of KdV type Publications mathématiques de l'IHÉS. ,vol. 61, pp. 5- 65 ,(1985) , 10.1007/BF02698802
V. E. Zakharov, A. B. Shabat, Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II Functional Analysis and Its Applications. ,vol. 13, pp. 166- 174 ,(1979) , 10.1007/BF01077483
I. M. Gel'fand, I. Ya. Dorfman, Hamiltonian operators and the classical Yang—Baxter equation Functional Analysis and Its Applications. ,vol. 16, pp. 241- 248 ,(1983) , 10.1007/BF01077846
Ludvig. Faddeev, Integrable models in 1+1 dimensional quantum field theory To appear in Proc. of. pp. 294- 341 ,(1982)
Etsuro Date, TRANSFORMATION GROUPS FOR SOLITON EQUATIONS Bosonization. Edited by STONE M. Published by World Scientific Publishing Co. Pte. Ltd. pp. 427- 507 ,(1982) , 10.1142/9789812812650_0032