Optimal distinction between non-orthogonal quantum states

作者: Asher Peres , Daniel R Terno

DOI: 10.1088/0305-4470/31/34/013

关键词: Quantum capacityQuantum relative entropyMathematicsQuantum t-designQuantum processDiscrete mathematicsQuantum error correctionCluster stateQuantum probabilityQuantum algorithmApplied mathematics

摘要: Given a finite set of linearly independent quantum states, an observer who examines single system may sometimes identify its state with certainty. However, unless these states are orthogonal, there is probability failure. A complete solution given to the problem optimal distinction three having arbitrary prior probabilities and detection values. generalization more than outlined.

参考文章(9)
Gregg Jaeger, Abner Shimony, Optimal distinction between two non-orthogonal quantum states Physics Letters A. ,vol. 197, pp. 83- 87 ,(1995) , 10.1016/0375-9601(94)00919-G
Charles H. Bennett, Quantum cryptography using any two nonorthogonal states Physical Review Letters. ,vol. 68, pp. 3121- 3124 ,(1992) , 10.1103/PHYSREVLETT.68.3121
Anthony Chefles, Unambiguous discrimination between linearly independent quantum states Physics Letters A. ,vol. 239, pp. 339- 347 ,(1998) , 10.1016/S0375-9601(98)00064-4
Carl Wilhelm Helstrom, Quantum detection and estimation theory ,(1969)
Asher Peres, How to differentiate between non-orthogonal states Physics Letters A. ,vol. 128, pp. 19- 19 ,(1988) , 10.1016/0375-9601(88)91034-1
D. Dieks, Overlap and distinguishability of quantum states Physics Letters A. ,vol. 126, pp. 303- 306 ,(1988) , 10.1016/0375-9601(88)90840-7
E. Davies, Information and quantum measurement IEEE Transactions on Information Theory. ,vol. 24, pp. 596- 599 ,(1978) , 10.1109/TIT.1978.1055941
H. Yuen, Review of 'Quantum Detection and Estimation Theory' (Helstrom, C. W.; 1976) IEEE Transactions on Information Theory. ,vol. 23, pp. 649- 650 ,(1977) , 10.1109/TIT.1977.1055759
Asher Peres, Leslie E. Ballentine, Quantum Theory: Concepts and Methods ,(1993)