System and method for molecular diagnosis of depression based on boosting classification

作者: Amit Chakraborty , Dorin Comaniciu , Lu-yong Wang

DOI:

关键词: Artificial intelligenceData miningMass spectrometricBoosting (machine learning)Alternating decision treeMathematicsPattern recognition

摘要: A method for diagnosing depression includes providing surface-enhanced laser desorption/ionisation mass spectrometric (SELDI-MS) data of a plurality proteins, said obtained from patient and comprising peak values, analysing values with an alternating decision tree set tests peaks associated prediction wherein is predictive if sum the greater than 1.0.

参考文章(7)
Egisto Boschetti, William E. Rich, Tai-Tung Yip, Lee O. Lomas, Protein interaction difference mapping ,(2003)
Leonardo Guzman-Martinez, Ricardo B Maccioni, Gonzalo A Farías, Patricio Fuentes, Leonardo P Navarrete, None, Biomarkers for Alzheimer's disease ,(2004)
Yoav Freund, Llew Mason, The Alternating Decision Tree Learning Algorithm international conference on machine learning. pp. 124- 133 ,(1999)
Miao-Kun Sun, Daniel L. Alkon, Treatment of Depressive Disorders ,(2005)
Yoav Freund, Robert Schapire, Naoki Abe, A Short Introduction to Boosting ,(1999)
Barry K. Rosen, Se June Hong, Cascade boosting of predictive models ,(1999)