Parametrization of stochastic inputs using generative adversarial networks with application in geology

作者: Ahmed H. Elsheikh , Shing Chan

DOI:

关键词: Parametric equationAlgorithmComputer scienceDimensionality reductionDeep learningParametrizationArtificial intelligenceUncertainty quantificationArtificial neural networkEstimation theory

摘要: We investigate artificial neural networks as a parametrization tool for stochastic inputs in numerical simulations. address from the point of view emulating data generating process, instead explicitly constructing parametric form to preserve predefined statistics data. This is done by training network generate samples distribution using recent deep learning technique called generative adversarial networks. By relevant are replicated. The method assessed subsurface flow problems, where effective underground properties such permeability important due high dimensionality and presence spatial correlations. experiment with realizations binary channelized perform uncertainty quantification parameter estimation. Results show that very preserving visual realism well order responses, while achieving reduction two orders magnitude.

参考文章(51)
Alv-Arne Grimstad, Trond Mannseth, Geir Nævdal, Hege Urkedal, Adaptive Multiscale Permeability Estimation Computational Geosciences. ,vol. 7, pp. 1- 25 ,(2003) , 10.1023/A:1022417923824
Kunihiko Fukushima, Sei Miyake, Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition Springer, Berlin, Heidelberg. pp. 267- 285 ,(1982) , 10.1007/978-3-642-46466-9_18
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
S. Torquato, G. Stell, Microstructure of two‐phase random media. I. The n‐point probability functions The Journal of Chemical Physics. ,vol. 77, pp. 2071- 2077 ,(1982) , 10.1063/1.444011
A.C. Reynolds, Nanqun He, Lifu Chu, D.S. Oliver, Reparameterization Techniques for Generating Reservoir Descriptions Conditioned to Variograms and Well-Test Pressure Data Spe Journal. ,vol. 1, pp. 413- 426 ,(1996) , 10.2118/30588-PA
Sebastien B. Strebelle, Andre G. Journel, Reservoir Modeling Using Multiple-Point Statistics SPE Annual Technical Conference and Exhibition. ,(2001) , 10.2118/71324-MS
Mohammadreza Mohammad Khaninezhad, Behnam Jafarpour, Lianlin Li, Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation Advances in Water Resources. ,vol. 39, pp. 106- 121 ,(2012) , 10.1016/J.ADVWATRES.2011.09.002
Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L^2(R) Transactions of the American Mathematical Society. ,vol. 315, pp. 69- 87 ,(1989) , 10.1090/S0002-9947-1989-1008470-5