Local solution to the multi-layer KPZ equation

作者: Hao Shen , Dirk Erhard , Ajay Chandra

DOI: 10.1007/S10955-019-02278-4

关键词: Mathematical physicsMulti layerStochastic partial differential equationLogarithmRenormalizationSystem of linear equationsSingle layerWhite noisePhysics

摘要: In this article we prove local well-posedness of the system equations \(\partial _t h_{i}= \sum _{j=1}^{i}\partial _x^2 h_{j}+ (\partial _x h_{i})^2 + \xi \) on circle where \(1\le i\le N\) and \(\xi is a space-time white noise. We attempt to generalize renormalization procedure which gives Hopf-Cole solution for single layer equation our \(h_1\) (solution first layer) coincides with solution. However, observe that cancellation logarithmic divergences occurs at does not hold higher layers develop explicit combinatorial formulae them.

参考文章(8)
L. Carlitz, The product of several Hermite or Laguerre polynomials Monatshefte für Mathematik. ,vol. 66, pp. 393- 396 ,(1962) , 10.1007/BF01298234
Neil O’Connell, Jon Warren, A Multi-Layer Extension of the Stochastic Heat Equation Communications in Mathematical Physics. ,vol. 341, pp. 1- 33 ,(2016) , 10.1007/S00220-015-2541-3
Martin Hairer, Solving the KPZ equation Annals of Mathematics. ,vol. 178, pp. 559- 664 ,(2013) , 10.4007/ANNALS.2013.178.2.4
Tadahisa Funaki, Masato Hoshino, A coupled KPZ equation, its two types of approximations and existence of global solutions Journal of Functional Analysis. ,vol. 273, pp. 1165- 1204 ,(2017) , 10.1016/J.JFA.2017.05.002
Martin Hairer, Lorenzo Zambotti, Yvain Bruned, Algebraic renormalisation of regularity structures arXiv: Rings and Algebras. ,(2016)
Martin Hairer, Hao Shen, A central limit theorem for the KPZ equation Annals of Probability. ,vol. 45, pp. 4167- 4221 ,(2017) , 10.1214/16-AOP1162
MARTIN HAIRER, JEREMY QUASTEL, A class of growth models rescaling to KPZ Forum of Mathematics, Pi. ,vol. 6, ,(2018) , 10.1017/FMP.2018.2
Martin Hairer, A theory of regularity structures Inventiones Mathematicae. ,vol. 198, pp. 269- 504 ,(2014) , 10.1007/S00222-014-0505-4