Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts

作者: F. Marsusi , J. Sabbaghzadeh , N. D. Drummond

DOI: 10.1103/PHYSREVB.84.245315

关键词: Quantum Monte CarloSpectral lineDistortionStokes shiftAtomic physicsExcited stateExcitonPhysicsDensity functional theoryDiamondoid

摘要: We compute the absorption and emission energies hence Stokes shifts of small diamondoids as a function size using different theoretical approaches, including density-functional theory (DFT) quantum Monte Carlo (QMC) calculations. The spectra these molecules are also investigated by time-dependent DFT compared with experiment. analyze structural distortion formation self-trapped exciton in excited state, we study effects on shift size. Compared to recent experiments, QMC overestimates excitation about 0.8(1) eV average. Benefiting from cancellation errors, optical gaps obtained calculations B3LYP functional better agreement It is shown that can reproduce most features found experimental spectra. According our calculations, structures state show which hardly noticeable for methane. As number diamond cages increased, mechanism abruptly changes character. have dependent decreases cages. If neglect orbital symmetry excitations, rate decrease is, average, 0.1 per cage diamondoids.

参考文章(50)
Photodissociation of Methane at Lyman Alpha (121.6 nm) Bulletin of The Korean Chemical Society. ,vol. 29, pp. 177- 180 ,(2008) , 10.5012/BKCS.2008.29.1.177
S. Kurth, M.A.L. Marques, E.K.U. Gross, Density-Functional Theory Reference Module in Materials Science and Materials Engineering#R##N#Encyclopedia of Condensed Matter Physics. pp. 395- 402 ,(2005) , 10.1016/B0-12-369401-9/00445-9
D Alfè, MJ Gillan, None, Efficient localized basis set for quantum Monte Carlo calculations on condensed matter Physical Review B. ,vol. 70, pp. 161101- ,(2004) , 10.1103/PHYSREVB.70.161101
Jean-Yves Raty, Giulia Galli, C. Bostedt, Tony van Buuren, Louis Terminello, Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds Physical Review Letters. ,vol. 90, pp. 037401- ,(2003) , 10.1103/PHYSREVLETT.90.037401
J. W. Wilkins, C. J. Umrigar, K. G. Wilson, Optimized trial wave functions for quantum Monte Carlo calculations Physical Review Letters. ,vol. 60, pp. 1719- 1722 ,(1988) , 10.1103/PHYSREVLETT.60.1719
P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler, R. J. Needs, Inhomogeneous backflow transformations in quantum Monte Carlo calculations. Physical Review E. ,vol. 74, pp. 066701- ,(2006) , 10.1103/PHYSREVE.74.066701
Peter J. Reynolds, David M. Ceperley, Berni J. Alder, William A. Lester, Fixed‐node quantum Monte Carlo for moleculesa) b) The Journal of Chemical Physics. ,vol. 77, pp. 5593- 5603 ,(1982) , 10.1063/1.443766
N. Troullier, JoséLuís Martins, A straightforward method for generating soft transferable pseudopotentials Solid State Communications. ,vol. 74, pp. 613- 616 ,(1990) , 10.1016/0038-1098(90)90686-6
John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple Physical Review Letters. ,vol. 77, pp. 3865- 3868 ,(1996) , 10.1103/PHYSREVLETT.77.3865
J. R. Trail, R. J. Needs, Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior. Journal of Chemical Physics. ,vol. 122, pp. 014112- 014112 ,(2005) , 10.1063/1.1829049