A Maximum Likelihood Estimator for Semi-Variogram Parameters in Kriging

作者: Ezio Todini , Federica Pellegrini

DOI: 10.1007/978-94-015-9297-0_16

关键词: Likelihood functionVariogramEfficient estimatorBayes estimatorMathematicsApplied mathematicsEstimation theoryKrigingRestricted maximum likelihoodBias of an estimator

摘要: This paper deals with the development of a new Maximum Likelihood (ML) estimator for semi-variogram parameters in ordinary Kriging, based upon assumption multi-normal distribution Kriging cross-validation errors. The discusses difference between proposed ML formulation and previously developed algorithms, showing its advantages, also view an approximate analysis uncertainty that parameter estimates may induced on estimates.

参考文章(19)
P. Delfiner, Linear Estimation of non Stationary Spatial Phenomena Springer, Dordrecht. pp. 49- 68 ,(1976) , 10.1007/978-94-010-1470-0_4
H. D. PATTERSON, R. THOMPSON, Recovery of inter-block information when block sizes are unequal Biometrika. ,vol. 58, pp. 545- 554 ,(1971) , 10.1093/BIOMET/58.3.545
Olivier Dubrule, Cross validation of kriging in a unique neighborhood Mathematical Geosciences. ,vol. 15, pp. 687- 699 ,(1983) , 10.1007/BF01033232
E. Todini, M. Ferraresi, Influence of parameter estimation uncertainty in Kriging Journal of Hydrology. ,vol. 175, pp. 555- 566 ,(1996) , 10.1016/S0022-1694(96)80024-2
A. Wald, J. Wolfowitz, Statistical Tests Based on Permutations of the Observations Annals of Mathematical Statistics. ,vol. 15, pp. 358- 372 ,(1944) , 10.1214/AOMS/1177731207
Noel Cressie, Fitting variogram models by weighted least squares Mathematical Geosciences. ,vol. 17, pp. 563- 586 ,(1985) , 10.1007/BF01032109
K. V. MARDIA, R. J. MARSHALL, Maximum likelihood estimation of models for residual covariance in spatial regression Biometrika. ,vol. 71, pp. 135- 146 ,(1984) , 10.1093/BIOMET/71.1.135
Noel Cressie, Douglas M. Hawkins, Robust estimation of the variogram: I Mathematical Geosciences. ,vol. 12, pp. 115- 125 ,(1980) , 10.1007/BF01035243