Analysis of Several Multigrid Implicit Algorithms for the Solution of the Euler Equations on Unstructured Meshes

作者: I. Lepot , P. Geuzaine , F. Meers , J. A. Essers , J. M. Vaassen

DOI: 10.1007/978-3-642-58312-4_21

关键词: Euler equationsMultigrid methodMathematical optimizationJacobian matrix and determinantApplied mathematicsLinear systemDiscretizationSystem of linear equationsSolverMathematicsGeneralized minimal residual method

摘要: The aim of this paper is to investigate the interest multigrid techniques used in conjunction with a Newton-Krylov solver. Newton’s method linearize system equations resulting from an implicit discretization Euler on unstructured meshes. These linear systems are solved by preconditioned jacobian-free GMRES solver [1]; storage lower-order jacobian however required for preconditioning purposes. To increase radius convergence method, pseudo-transient continuation and mesh sequencing procedure implemented.

参考文章(6)
L.-E. Eriksson, A preconditioned Navier-Stokes solver for low Mach number flows ECCOMAS computational fluid dynamics conference. pp. 199- 205 ,(1996)
D. J. Mavriplis, MULTIGRID TECHNIQUES FOR UNSTRUCTURED MESHES Lecture series - van Kareman Institute for fluid dynamics. ,vol. 2, ,(1995)
Peter N. Brown, Youcef Saad, Hybrid Krylov methods for nonlinear systems of equations Siam Journal on Scientific and Statistical Computing. ,vol. 11, pp. 450- 481 ,(1990) , 10.1137/0911026
Stanley C. Eisenstat, Homer F. Walker, Choosing the Forcing Terms in an Inexact Newton Method SIAM Journal on Scientific Computing. ,vol. 17, pp. 16- 32 ,(1996) , 10.1137/0917003
John D Ramshaw, Conservative rezoning algorithm for generalized two-dimensional meshes☆ Journal of Computational Physics. ,vol. 59, pp. 193- 199 ,(1985) , 10.1016/0021-9991(85)90141-X
P. Geuzaine, I. Lepot, F. Meers, J.-A. Essers, Multilevel Newton-Krylov algorithms for computing compressible flows on unstructured meshes 14th Computational Fluid Dynamics Conference. ,(1999) , 10.2514/6.1999-3341