On the stability of some analytically solvable maximum probability domains

作者: M. Menéndez , A. Martín Pendás

DOI: 10.1007/S00214-014-1539-9

关键词: Electronic correlationStability (probability)DerivativeStatistical physicsStationary pointElectronMaximizationHessian matrixMultiplicity (mathematics)MathematicsQuantum mechanics

摘要: The stability of some maximum probability domains (MPDs) determined for a set analytically solvable models is examined. MPDs are regions the physical space that maximize finding an exact, integer number electrons and have been shown to provide vivid images cores, lone bonding pairs, etc. They obtained by numerical maximization techniques based on use shape derivative, which has vanish at any stationary point. Here, we give first steps Hessian gain information about true nature solutions. As general conclusion, electron correlation seems decrease multiplicity solutions found Hartree–Fock level, remaining closer what it expected from chemical insight.

参考文章(22)
Osvaldo Mafra Lopes, Benoît Braïda, Mauro Causà, Andreas Savin, Understanding Maximum Probability Domains with Simple Models Springer, Dordrecht. pp. 173- 184 ,(2012) , 10.1007/978-94-007-2076-3_10
Jean-Paul Zolesio, Jan Sokolowski, Introduction to shape optimization ,(1992)
E. Francisco, A. Martín Pendás, M. A. Blanco, Electron number probability distributions for correlated wave functions. Journal of Chemical Physics. ,vol. 126, pp. 094102- 094102 ,(2007) , 10.1063/1.2709883
A. Martín Pendás, E. Francisco, M. A. Blanco, Spin resolved electron number distribution functions: how spins couple in real space. Journal of Chemical Physics. ,vol. 127, pp. 144103- ,(2007) , 10.1063/1.2784392
Richard F. W. Bader, Atoms in molecules ,(1990)
Eric Cancès, Renaud Keriven, François Lodier, Andreas Savin, How electrons guard the space: shape optimization with probability distribution criteria Theoretical Chemistry Accounts. ,vol. 111, pp. 373- 380 ,(2004) , 10.1007/S00214-003-0509-4
A. Martín Pendás, J. Hernández-Trujillo, The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule. Journal of Chemical Physics. ,vol. 137, pp. 134101- 134101 ,(2012) , 10.1063/1.4755326