Image Reconstruction Using Analysis Model Prior

作者: Yu Han , Huiqian Du , Fan Lam , Wenbo Mei , Liping Fang

DOI: 10.1155/2016/7571934

关键词: General positionComputer scienceUniquenessData miningIterative reconstructionContext (language use)Linear modelOperator (computer programming)Image (mathematics)Outcome (probability)Algorithm

摘要: The analysis model has been previously exploited as an alternative to the classical sparse synthesis for designing image reconstruction methods. Applying a suitable operator on of interest yields cosparse outcome which enables us reconstruct from undersampled data. In this work, we introduce additional prior in context and theoretically study uniqueness issues terms operators general position specific 2D finite difference operator. We establish bounds minimum measurement numbers are lower than those cases without using prior. Based idea iterative cosupport detection (ICD), develop novel effective algorithm, achieving significantly better performance. Simulation results synthetic practical magnetic resonance (MR) images also shown illustrate our theoretical claims.

参考文章(48)
Gabriel Peyré, S. G. Mallat, A Wavelet Tour of Signal Processing : The Sparse Way Elsevier/Academic Press. ,(2008)
Maryia Kabanava, Holger Rauhut, Cosparsity in Compressed Sensing Birkhäuser, Cham. pp. 315- 339 ,(2015) , 10.1007/978-3-319-16042-9_11
Per Christian Hansen, Dianne Prost O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems SIAM Journal on Scientific Computing. ,vol. 14, pp. 1487- 1503 ,(1993) , 10.1137/0914086
Alfred M. Bruckstein, David L. Donoho, Michael Elad, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images Siam Review. ,vol. 51, pp. 34- 81 ,(2009) , 10.1137/060657704
Yilun Wang, Junfeng Yang, Wotao Yin, Yin Zhang, A New Alternating Minimization Algorithm for Total Variation Image Reconstruction Siam Journal on Imaging Sciences. ,vol. 1, pp. 248- 272 ,(2008) , 10.1137/080724265
S. Ramani, Zhihao Liu, J. Rosen, J. Nielsen, J. A. Fessler, Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods IEEE Transactions on Image Processing. ,vol. 21, pp. 3659- 3672 ,(2012) , 10.1109/TIP.2012.2195015
Ron Rubinstein, Tomer Peleg, Michael Elad, Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model IEEE Transactions on Signal Processing. ,vol. 61, pp. 661- 677 ,(2013) , 10.1109/TSP.2012.2226445
M. Elad, J.-L. Starck, P. Querre, D.L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) Applied and Computational Harmonic Analysis. ,vol. 19, pp. 340- 358 ,(2005) , 10.1016/J.ACHA.2005.03.005
Yu Han, Huiqian Du, Wenbo Mei, Liping Fang, MR image reconstruction with block sparsity and iterative support detection Magnetic Resonance Imaging. ,vol. 33, pp. 624- 634 ,(2015) , 10.1016/J.MRI.2015.01.011