Distribution modelling of vegetation types based on area frame survey data

作者: Peter Horvath , Rune Halvorsen , Frode Stordal , Lena Merete Tallaksen , Hui Tang

DOI: 10.1111/AVSC.12451

关键词: Logistic regressionDistribution (economics)Land useCartographyScale (map)Survey data collectionLand coverVegetationEnvironmental scienceField (geography)

摘要: AIM: Many countries lack informative, high‐resolution, wall‐to‐wall vegetation or land cover maps. Such maps are useful for land use and nature management, input to regional climate hydrological models. Land cover based on remote sensing data typically the required ecological information, whereas traditional field‐based mapping is too expensive be carried out over large areas. In this study, we therefore explore extent which distribution modelling (DM) methods predicting current of types (VT) a national scale. LOCATION: Mainland Norway, covering ca. 324,000 km². METHODS: We used presence/absence 31 different VTs, mapped in an area frame survey with 1081 rectangular plots 0.9 km². Distribution models each VT were obtained by logistic generalised linear modelling, using stepwise forward selection F‐ratio test. A total 116 explanatory variables, recorded 100 m × 100 m grid cells, used. The evaluated applying AUC criterion independent evaluation dataset. RESULTS: Twenty‐one had values higher than 0.8. highest value (0.989) was Poor/rich broadleaf deciduous forest, lowest (0.671) Lichen heather spruce forest. Overall, found that rare VTs predicted better common ones, coastal inland ones. CONCLUSIONS: Our study establishes DM as viable tool spatial prediction aggregated species‐based entities such scale at fine (100 m) resolution, provided relevant predictor variables available. discuss potential uses utilizing large‐scale international surveys. also argue predictions from may improve parameterisation earth system

参考文章(80)
T.R Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T., and Holcombe, Caveats for correlative species distribution modeling Ecological Informatics. ,vol. 29, pp. 6- 15 ,(2015) , 10.1016/J.ECOINF.2015.06.007
David García-Callejas, Miguel B. Araújo, The effects of model and data complexity on predictions from species distributions models Ecological Modelling. ,vol. 326, pp. 4- 12 ,(2016) , 10.1016/J.ECOLMODEL.2015.06.002
E.M. Cawsey, M.P. Austin, B.L. Baker, Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling Biodiversity and Conservation. ,vol. 11, pp. 2239- 2274 ,(2002) , 10.1023/A:1021350813586
Julien Pottier, Anne Dubuis, Loïc Pellissier, Luigi Maiorano, Leila Rossier, Christophe F. Randin, Pascal Vittoz, Antoine Guisan, The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients Global Ecology and Biogeography. ,vol. 22, pp. 52- 63 ,(2013) , 10.1111/J.1466-8238.2012.00790.X
Janet Franklin, Mapping Vegetation from Landscape to Regional Scales John Wiley & Sons, Ltd. pp. 486- 508 ,(2013) , 10.1002/9781118452592.CH16
Chenxin Chen, Zhao Bian, Shengyang Li, Ping Tang, Honggan Wu, Improving forest type classification using the vegetation local difference index Journal of remote sensing. ,vol. 36, pp. 3701- 3713 ,(2015) , 10.1080/01431161.2015.1047992
Jane Elith, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee, Colin J. Yates, A statistical explanation of MaxEnt for ecologists Diversity and Distributions. ,vol. 17, pp. 43- 57 ,(2011) , 10.1111/J.1472-4642.2010.00725.X
A. Mikolajczak, D. Maréchal, T. Sanz, M. Isenmann, V. Thierion, S. Luque, Modelling spatial distributions of alpine vegetation : a graph theory approach to delineate ecologically-consistent species assemblages Ecological Informatics. ,vol. 30, pp. 196- 202 ,(2015) , 10.1016/J.ECOINF.2015.09.005
Boris Leroy, Christine N. Meynard, Céline Bellard, Franck Courchamp, virtualspecies, an R package to generate virtual species distributions Ecography. ,vol. 39, pp. 599- 607 ,(2016) , 10.1111/ECOG.01388
André S. J. Proosdij, Marc S. M. Sosef, Jan J. Wieringa, Niels Raes, Minimum required number of specimen records to develop accurate species distribution models Ecography. ,vol. 39, pp. 542- 552 ,(2016) , 10.1111/ECOG.01509