A Hybrid Intelligent Algorithm for Fuzzy Dynamic Inventory Problem

作者: Jinwu Gao , Xueqin Feng

DOI:

关键词: Curse of dimensionalityState spaceFunction (mathematics)Set (abstract data type)Artificial neural networkArtificial intelligenceComputer scienceMathematical optimizationSpace (commercial competition)AlgorithmFuzzy logicSample (statistics)

摘要: In this paper, a fuzzy inventory problem with multiple commodities is casted into dynamic pro- gramming model continuous state space and decision space. order to solve the programming model, genetic algorithms are used get samples of optimal cost functions, then neural networks trained approximate function on randomly generated sample set, which may bypass "the curse dimensionality". A hybrid intelligent algorithm thus produced functions that represented by networks. Lastly, numerical example given for illustrating purpose

参考文章(32)
Ronald R. Yager, On the Evaluation of Uncertain Courses of Action. Fuzzy Optimization and Decision Making. ,vol. 1, pp. 13- 41 ,(2002) , 10.1023/A:1013715523644
B. Liu, Fuzzy criterion models for inventory systems with partial backorders Annals of Operations Research. ,vol. 87, pp. 117- 126 ,(1999) , 10.1023/A:1018912431271
Augustine O. Esogbue, Baoding Liu, Decision criteria and optimal inventory processes ,(1999)
Didier Dubois, Henri Prade, FUZZY NUMBERS: AN OVERVIEW Morgan Kaufmann. pp. 112- 148 ,(1993) , 10.1016/B978-1-4832-1450-4.50015-8
John N. Tsitsiklis, Dimitri P. Bertsekas, Neuro-dynamic programming ,(1996)
Stanisław Heilpern, The expected value of a fuzzy number Fuzzy Sets and Systems. ,vol. 47, pp. 81- 86 ,(1992) , 10.1016/0165-0114(92)90062-9
Baoding Liu, Kakuzo Iwamura, Chance constrained programming with fuzzy parameters Fuzzy Sets and Systems. ,vol. 94, pp. 227- 237 ,(1998) , 10.1016/S0165-0114(96)00236-9