Hyperbolic wavelet thresholding methods and the curse of dimensionality through the maxiset approach

作者: F. Autin , G. Claeskens , J.-M. Freyermuth

DOI: 10.1016/J.ACHA.2013.04.003

关键词: ThresholdingPoolingEstimatorAlgorithmNoise reductionWavelet thresholdingDomain (mathematical analysis)WaveletMathematicsMathematical optimizationCurse of dimensionality

摘要: In this paper we compute the maxisets of some denoising methods (estimators) for multidimensional signals based on thresholding coefficients in hyperbolic wavelet bases. That is, determine largest functional space over which risk these estimators converges at a chosen rate. unidimensional setting, refining choice that are subject to by pooling information from geometric structures coefficient domain (e.g., vertical blocks) is known provide ‘large maxisets’. situation less straightforward. sense much more exposed curse dimensionality. However identify cases where has clear benefit. particular, general structural constraints can be related compound models and minimal level anisotropy.

参考文章(45)
Vincent Rivoirard, Maxisets for linear procedures Statistics & Probability Letters. ,vol. 67, pp. 267- 275 ,(2004) , 10.1016/J.SPL.2003.12.010
Gérard Kerkyacharian, Dominique Picard, Lucien Birgé, Peter Hall, Oleg Lepski, Enno Mammen, Alexandre Tsybakov, G. Kerkyacharian, D. Picard, Thresholding algorithms, maxisets and well-concentrated bases Test. ,vol. 9, pp. 283- 344 ,(2000) , 10.1007/BF02595738
Florent Autin, Jean-Marc Freyermuth, Rainer von Sachs, Ideal denoising within a family of tree-structured wavelet estimators Electronic Journal of Statistics. ,vol. 5, pp. 829- 855 ,(2011) , 10.1214/11-EJS628
F. Comte, C. Lacour, Anisotropic adaptive kernel deconvolution Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 49, pp. 569- 609 ,(2013) , 10.1214/11-AIHP470
Zeshang Yang, M. Kallergi, R.A. DeVore, B.J. Lucier, Wei Qian, R.A. Clark, L.P. Clarke, Effect of wavelet bases on compressing digital mammograms IEEE Engineering in Medicine and Biology Magazine. ,vol. 14, pp. 570- 577 ,(1995) , 10.1109/51.464773
Florent Autin, Maxisets for μ-thresholding rules Test. ,vol. 17, pp. 332- 349 ,(2008) , 10.1007/S11749-006-0035-5
M. F. Duarte, R. G. Baraniuk, Kronecker Compressive Sensing IEEE Transactions on Image Processing. ,vol. 21, pp. 494- 504 ,(2012) , 10.1109/TIP.2011.2165289
Wang Heping, Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets Journal of Mathematical Analysis and Applications. ,vol. 291, pp. 698- 715 ,(2004) , 10.1016/J.JMAA.2003.11.023
Yuri Ingster, Natalia Stepanova, Estimation and detection of functions from anisotropic Sobolev classes Electronic Journal of Statistics. ,vol. 5, pp. 484- 506 ,(2011) , 10.1214/11-EJS615