Accelerated Landweber iteration in Banach spaces

作者: Torsten Hein , Kamil S Kazimierski

DOI: 10.1088/0266-5611/26/5/055002

关键词: C0-semigroupEberlein–Šmulian theoremMathematicsApplied mathematicsLp spaceCompact operatorLandweber iterationBanach spaceApproximation propertyFinite-rank operatorMathematical analysis

摘要: We investigate a method of accelerated Landweber type for the iterative regularization nonlinear ill-posed operator equations in Banach spaces. Based on an auxiliary algorithm with simplified choice step-size parameter we present convergence and stability analysis under consideration. will close our discussion presentation numerical example.

参考文章(24)
A. B. Bakushinsky, M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems ,(2005)
Lior Tzafriri, Joram Lindenstrauss, Classical Banach spaces ,(1973)
Klaus Deimling, Nonlinear functional analysis Dover Publications. ,(1985) , 10.1007/978-3-662-00547-7
Otmar Scherzer, Barbara Kaltenbacher, Andreas Neubauer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems ,(2008)
Yue-Kuen Kwok, Mathematical models of financial derivatives Mathematical models of financial derivatives. ,(2008)
Bernd Hofmann, Peter Mathé, Analysis of Profile Functions for General Linear Regularization Methods SIAM Journal on Numerical Analysis. ,vol. 45, pp. 1122- 1141 ,(2007) , 10.1137/060654530
B Hofmann, O Scherzer, Factors influencing the ill-posedness of nonlinear problems Inverse Problems. ,vol. 10, pp. 1277- 1297 ,(1994) , 10.1088/0266-5611/10/6/007
B Hofmann, B Kaltenbacher, C Pöschl, O Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators Inverse Problems. ,vol. 23, pp. 987- 1010 ,(2007) , 10.1088/0266-5611/23/3/009