Bicontinuous hierarchical Na7V4(P2O7)4(PO4)/C nanorod–graphene composite with enhanced fast sodium and lithium ions intercalation chemistry

作者: Sen Zhang , Chao Deng , Yu Meng

DOI: 10.1039/C4TA04499A

关键词: ElectrochemistryIntercalation (chemistry)GrapheneMaterials scienceNanorodSodiumIonLithiumInorganic chemistryComposite number

摘要: Mixed polyanion materials with a 3D framework for battery electrodes have been attracting significant attention recently in view of the requirements to further improve energy storage and power densities. Herein, we present design hierarchical Na7V4(P2O7)4(PO4)/C nanorod–graphene composite as sodium- lithium-storage cathode materials. The structure is composed 1D rectangular nanorod, which coated by situ residual carbon wrapped reduced graphene-oxide sheet. open network graphene surface coating nanorod provide bicontinuous electron ion pathways, providing three-dimensional conductive efficient transfer. flexible electrode built from free binder or additive exhibits improved conductivity higher sodium/lithium migration coefficients than pristine nanorod. It approaches initial reversible electrochemical capacities 91.4 91.8 mA h g−1 high discharge potentials over 3.8 V (vs. Na/Na+ Li/Li+) good cycling properties capacity retentions 95% 83% after 200 cycles at 1 C rate sodium lithium intercalation systems, respectively. Even 10 C, it still delivers 87.4% (for sodium) 78.2% lithium) stability. Taking into consideration compatibilities both ions their superior characteristics, considered be promising high-rate capability material advanced applications.

参考文章(42)
J. Barker, R. K. B. Gover, P. Burns, A. J. Bryan, Li4 ∕ 3Ti5 ∕ 3O4 ‖ Na3V2 ( PO4 ) 2F3: An Example of a Hybrid-Ion Cell Using a Non-graphitic Anode Journal of The Electrochemical Society. ,vol. 154, ,(2007) , 10.1149/1.2756975
A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates Journal of The Electrochemical Society. ,vol. 144, pp. 1609- 1613 ,(1997) , 10.1149/1.1837649
Xianyong Wu, Yuliang Cao, Xinping Ai, Jiangfeng Qian, Hanxi Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry Electrochemistry Communications. ,vol. 31, pp. 145- 148 ,(2013) , 10.1016/J.ELECOM.2013.03.013
Verónica Palomares, Montse Casas-Cabanas, Elizabeth Castillo-Martínez, Man H. Han, Teófilo Rojo, Update on Na-based battery materials. A growing research path Energy and Environmental Science. ,vol. 6, pp. 2312- 2337 ,(2013) , 10.1039/C3EE41031E
Chilin Li, Congling Yin, Xiaoke Mu, Joachim Maier, Top-Down Synthesis of Open Framework Fluoride for Lithium and Sodium Batteries Chemistry of Materials. ,vol. 25, pp. 962- 969 ,(2013) , 10.1021/CM304127C
M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subba Rao, B.V.R. Chowdari, Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode Electrochimica Acta. ,vol. 85, pp. 572- 578 ,(2012) , 10.1016/J.ELECTACTA.2012.08.073
Shuo Li, Yifan Dong, Lin Xu, Xu Xu, Liang He, Liqiang Mai, Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3Nanograins for High-Performance Symmetric Sodium-Ion Batteries Advanced Materials. ,vol. 26, pp. 3545- 3553 ,(2014) , 10.1002/ADMA.201305522
Dezhi Yang, Xiao-Zhen Liao, Jifu Shen, Yu-Shi He, Zi-Feng Ma, A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries Journal of Materials Chemistry. ,vol. 2, pp. 6723- 6726 ,(2014) , 10.1039/C4TA00682H
N. Recham, M. Casas-Cabanas, J. Cabana, C. P. Grey, J-C. Jumas, L. Dupont, M. Armand, J-M. Tarascon, Formation of a complete solid solution between the triphylite and fayalite olivine structures Chemistry of Materials. ,vol. 20, pp. 6798- 6809 ,(2008) , 10.1021/CM801817N
Geoffroy Hautier, Anubhav Jain, Hailong Chen, Charles Moore, Shyue Ping Ong, Gerbrand Ceder, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations Journal of Materials Chemistry. ,vol. 21, pp. 17147- 17153 ,(2011) , 10.1039/C1JM12216A