Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations

作者: Tamás Kalmár-Nagy , Gábor Stépán , Francis C Moon , None

DOI: 10.1023/A:1012990608060

关键词: Nonlinear systemDelay differential equationDifferential equationSaddle-node bifurcationMathematicsComputationMathematical analysisReduction (mathematics)Hopf bifurcationCenter manifold

摘要: We show the existence of a subcritical Hopf bifurcation in thedelay-differential equation model so-called regenerative machine toolvibration. The calculation is based on reduction infinite-dimensional problem to two-dimensional center manifold. Due specialalgebraic structure delayed terms nonlinear part equation,the computation results simple analytical formulas. Numerical simulationsgave excellent agreement with results.

参考文章(13)
Stephen Albert Tobias, Machine Tool Vibration ,(1965)
G. Stépán, Retarded dynamical systems : stability and characteristic functions Longman Scientific & Technical , Wiley. ,(1989)
Frederick Winslow Taylor, On the art of cutting metals Trans. ASME. ,vol. 28, pp. 31- 350 ,(1907)
Y.-H. Wan, Nicholas D. Kazarinoff, B. D. Hassard, Theory and applications of Hopf bifurcation Cambridge University Press. ,(1981)
Paul D. Ritger, Nicholas J. Rose, Differential equations with applications ,(1967)
Timothy J. Burns, Matthew A. Davies, NONLINEAR DYNAMICS MODEL FOR CHIP SEGMENTATION IN MACHINING Physical Review Letters. ,vol. 79, pp. 447- 450 ,(1997) , 10.1103/PHYSREVLETT.79.447
H.M. Shi, S.A. Tobias, Theory of finite amplitude machine tool instability International Journal of Machine Tool Design and Research. ,vol. 24, pp. 45- 69 ,(1984) , 10.1016/0020-7357(84)90045-3
Sue Ann Campbell, Jacques Bélair, Toru Ohira, John Milton, Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 5, pp. 640- 645 ,(1995) , 10.1063/1.166134