The Completion of a Lattice Ordered Group

作者: Paul Conrad , Donald McAlister

DOI: 10.1017/S1446788700005760

关键词: MathematicsCombinatoricsAbelian groupInfimum and supremumLattice (order)

摘要: A lattice ordered group(‘l-group’) is called complete if each set of elements that bounded above has a least upper bound (and dually). l-group archimedean and hence abelian, completion in the sense following theorem.

参考文章(20)
B. Banaschewski, On lattice-ordered groups Fundamenta Mathematicae. ,vol. 55, pp. 113- 122 ,(1964) , 10.4064/FM-55-2-113-122
Marlow E. Anderson, Paul F. Conrad, Jorge Martinez, The Lattice of Convex l-Subgroups of a Lattice-Ordered Group Czechoslovak Mathematical Journal. ,vol. 15, pp. 105- 127 ,(1965) , 10.1007/978-94-009-2283-9_6
K. Lorenz, Über Strukturverbände von Verbandsgruppen Acta Mathematica Hungarica. ,vol. 13, pp. 55- 67 ,(1962) , 10.1007/BF02033625
S. J. Bernau, Unique Representation of Archimedean Lattice Groups and Normal Archimedean Lattice Rings Proceedings of the London Mathematical Society. ,vol. s3-16, pp. 384- 384 ,(1966) , 10.1112/PLMS/S3-16.1.384
S. J. Bernau, Orthocompletion of Lattice Groups Proceedings of the London Mathematical Society. ,vol. s3-16, pp. 107- 130 ,(1966) , 10.1112/PLMS/S3-16.1.107
Paul Conrad, Some structure theorems for lattice-ordered groups Transactions of the American Mathematical Society. ,vol. 99, pp. 212- 240 ,(1961) , 10.1090/S0002-9947-1961-0121405-2
Richard D. Byrd, Justin T. Lloyd, A Note on Lateral Completions in Lattice-Ordered Groups Journal of the London Mathematical Society. ,vol. s2-1, pp. 358- 362 ,(1969) , 10.1112/JLMS/S2-1.1.358
Elliot Weinberg, Completely distributed lattice-ordered groups. Pacific Journal of Mathematics. ,vol. 12, pp. 1131- 1137 ,(1962) , 10.2140/PJM.1962.12.1131
Elliot Carl Weinberg, Free lattice-ordered Abelian groups Mathematische Annalen. ,vol. 151, pp. 187- 199 ,(1963) , 10.1007/BF01362439