作者: Thomas Schack , Bettina Bläsing , André Frank Krause , Volker Dürr
DOI:
关键词: State (computer science) 、 Echo (computing) 、 Multi-objective optimization 、 Network size 、 Computer science 、 Bifurcation 、 Mathematical optimization 、 Pattern learning 、 Net (mathematics) 、 Recurrent neural network
摘要: Echo State Networks are a special class of recurrent neural networks, that well-suited for attractorbased learning motor patterns. Using structural multiobjective optimization, the trade-off between network size and accuracy can be identified. This allows to choose feasible model capacity follow-up full-weight optimization. It is shown produce small efficient capable storing multiple patterns in single net. Especially smaller networks interpolate learned using bifurcation inputs.