Multiobjective optimization of echo state networks for multiple motor pattern learning

作者: Thomas Schack , Bettina Bläsing , André Frank Krause , Volker Dürr

DOI:

关键词: State (computer science)Echo (computing)Multi-objective optimizationNetwork sizeComputer scienceBifurcationMathematical optimizationPattern learningNet (mathematics)Recurrent neural network

摘要: Echo State Networks are a special class of recurrent neural networks, that well-suited for attractorbased learning motor patterns. Using structural multiobjective optimization, the trade-off between network size and accuracy can be identified. This allows to choose feasible model capacity follow-up full-weight optimization. It is shown produce small efficient capable storing multiple patterns in single net. Especially smaller networks interpolate learned using bifurcation inputs.

参考文章(12)
André Frank Krause, Bettina Bläsing, Volker Dürr, Thomas Schack, Direct Control of an Active Tactile Sensor Using Echo State Networks Human Centered Robot Systems. Cognition, Interaction, Technology. pp. 11- 21 ,(2009) , 10.1007/978-3-642-10403-9_2
Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, Udo Siewert, 2007 Special Issue: Optimization and applications of echo state networks with leaky- integrator neurons Neural Networks. ,vol. 20, pp. 335- 352 ,(2007) , 10.1016/J.NEUNET.2007.04.016
Masahiko Haruno, Daniel M. Wolpert, Mitsuo Kawato, MOSAIC Model for Sensorimotor Learning and Control Neural Computation. ,vol. 13, pp. 2201- 2220 ,(2001) , 10.1162/089976601750541778
Jasper A Vrugt, Bruce A Robinson, James M Hyman, None, Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces IEEE Transactions on Evolutionary Computation. ,vol. 13, pp. 243- 259 ,(2009) , 10.1109/TEVC.2008.924428
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II IEEE Transactions on Evolutionary Computation. ,vol. 6, pp. 182- 197 ,(2002) , 10.1109/4235.996017