High-Order Polynomial Observer Design for Robust Adaptive Synchronization of Uncertain Fractional-Order Chaotic Systems

作者: Kammogne Soup Tewa Alain

DOI: 10.1007/S40313-020-00612-W

关键词: Nonlinear systemSynchronization (computer science)Control theorySystem dynamicsComputer scienceLyapunov stabilityExponential stabilityObserver (quantum physics)PolynomialRobust control

摘要: Our focus in this paper is to present a new procedure of designing high-order robust observer for chaos synchronization general class uncertain nonlinear system with fractional-order derivative, using an adaptive strategy together some parameter adjusting mechanisms. Some less stringent conditions the exponential and asymptotic stability control systems fractional order are derived. A criterion error obtained master–slave concept Lyapunov theory associated algebraic manipulations. The high polynomial which can guarantee closed loop also rejects effect perturbations on dynamics within prescribed level. findings research illustrated computer simulations problem Genesio–Tesi system. proposed approach offers systematic design large systems.

参考文章(38)
Salvatore Nicosia, Antonio Tornambè, High-gain observers in the state and estimation of robots having elastic joints Systems & Control Letters. ,vol. 13, pp. 331- 337 ,(1989) , 10.1016/0167-6911(89)90121-7
Hamid Reza Koofigar, Farid Sheikholeslam, Saeed Hosseinnia, Robust adaptive synchronization for a general class of uncertain chaotic systems with application to Chua’s circuit Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 21, pp. 043134- ,(2011) , 10.1063/1.3671969
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821
Mohammad Saleh Tavazoei, Mohammad Haeri, Chaotic attractors in incommensurate fractional order systems Physica D: Nonlinear Phenomena. ,vol. 237, pp. 2628- 2637 ,(2008) , 10.1016/J.PHYSD.2008.03.037
Kai Diethelm, Neville J. Ford, Alan D. Freed, Detailed error analysis for a fractional Adams method Numerical Algorithms. ,vol. 36, pp. 31- 52 ,(2004) , 10.1023/B:NUMA.0000027736.85078.BE
Mohammad Saleh Tavazoei, Notes on integral performance indices in fractional-order control systems Journal of Process Control. ,vol. 20, pp. 285- 291 ,(2010) , 10.1016/J.JPROCONT.2009.09.005
X.Z. Zhang, Y.N. Wang, Design of Robust Fuzzy Sliding-Mode Controller for a Class of Uncertain Takagi-Sugeno Nonlinear Systems International Journal of Computers Communications & Control. ,vol. 10, pp. 136- 146 ,(2014) , 10.15837/IJCCC.2015.1.1572
Liping Chen, Jianfeng Qu, Yi Chai, Ranchao Wu, Guoyuan Qi, Synchronization of a Class of Fractional-Order Chaotic Neural Networks Entropy. ,vol. 15, pp. 3265- 3276 ,(2013) , 10.3390/E15083355
Changpin Li, Weihua Deng, Remarks on fractional derivatives Applied Mathematics and Computation. ,vol. 187, pp. 777- 784 ,(2007) , 10.1016/J.AMC.2006.08.163
Xing-Yuan Wang, Jun-Mei Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control Communications in Nonlinear Science and Numerical Simulation. ,vol. 14, pp. 3351- 3357 ,(2009) , 10.1016/J.CNSNS.2009.01.010