Fractional Fourier Transforms

作者: Bruce J. West , Mauro Bologna , Paolo Grigolini

DOI: 10.1007/978-0-387-21746-8_4

关键词: Classical mechanicsWave equationWave propagationFourier seriesPhysicsFractional calculusFourier transformFractalScalar fieldFourier analysis

摘要: In the next few lectures we provide a brief overview of Fourier analysis and how it has been used to model lin- ear physical phenomena, particularly reversible propagation scalar waves in homogeneous media irreversible diffusion one molecular species within another. The purpose this review is orient reader so that significance wave fractal will be apparent as anom- alous diffusion. These latter topics have emerged last two decades natural successors phenomena examined 19th early 20th centuries.

参考文章(9)
Michael Ghil, Società italiana di fisica, Giorgio Parisi, Roberto Benzi, Turbulence and predictability in geophysical fluid dynamics and climate dynamics North-Holland. ,(1985)
John A. Scales, Roel Snieder, What is a wave Nature. ,vol. 401, pp. 739- 740 ,(1999) , 10.1038/44453
Paul Adrien Maurice Dirac, The Principles of Quantum Mechanics ,(1930)
G. Kirchhoff, Zur Theorie der Lichtstrahlen Annalen der Physik. ,vol. 254, pp. 663- 695 ,(1883) , 10.1002/ANDP.18832540409
Katja Lindenberg, Bruce J. West, The First, The Biggest, and Other Such Considerations Journal of Statistical Physics. ,vol. 42, pp. 201- 243 ,(1986) , 10.1007/BF01010847
R. A. Kunze, M. J. Lighthill, An Introduction to Fourier Analysis and Generalized Functions. American Mathematical Monthly. ,vol. 66, pp. 243- ,(1959) , 10.2307/2309536
Stephen B. Pope, Dirac delta functions Cambridge University Press. pp. 670- 677 ,(2000)