Exposing Android Ransomware using Machine Learning

作者: Oneil B. Victoriano

DOI: 10.1145/3394788.3394923

关键词: RansomwareGradient boostingNaive Bayes classifierArtificial intelligenceDecision treeComputer scienceMachine learningAdaBoostOverfittingRandom forestMalware

摘要: The Ransomware detection reports from cyber-security companies trigger high threat in Android devices vulnerability. study used machine learning approaches, particularly classifiers: Decision Tree, Random Forest, Gradient Boosting Trees, and AdaBoost to detect malware. dataset HelDroid with known Ransomware's features, the was transformed feed on classifier model. Using 5-attribute classifier, models generate average of 98.05% accuracy rate, both training test sets. same results Naive Bayes classifiers mean cross-validation Gaussian Bernoulli is 97.6%, while Multinomial 81.6%. Feeding binarized 229-attribute dataset, Tree generates 99.08% accuracy, three Classifiers returns 100% overfit results.

参考文章(13)
Peter Mameli, Adina Schwartz, John Kleinig, Seumas Miller, Douglas Salane, Security and Privacy: Global Standards for Ethical Identity Management in Contemporary Liberal Democratic States ,(2012)
Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, Abdullah Gani, Evaluation of machine learning classifiers for mobile malware detection soft computing. ,vol. 20, pp. 343- 357 ,(2016) , 10.1007/S00500-014-1511-6
Zhengyang Qu, Shahid Alam, Vaibhav Rastogi, Yan Chen, Ryan Riley, DroidNative: Semantic-Based Detection of Android Native Code Malware arXiv: Cryptography and Security. ,(2016)
Sanggeun Song, Bongjoon Kim, Sangjun Lee, The Effective Ransomware Prevention Technique Using Process Monitoring on Android Platform Mobile Information Systems. ,vol. 2016, pp. 1- 9 ,(2016) , 10.1155/2016/2946735
Altyeb Altaher, Classification of Android Malware Applications using Feature Selection and Classification Algorithms VAWKUM Transactions on Computer Sciences. ,vol. 10, pp. 1- 5 ,(2016) , 10.21015/VTCS.V10I1.412
Monika, Pavol Zavarsky, Dale Lindskog, Experimental Analysis of Ransomware on Windows and Android Platforms: Evolution and Characterization☆ Procedia Computer Science. ,vol. 94, pp. 465- 472 ,(2016) , 10.1016/J.PROCS.2016.08.072
Daniele Sgandurra, Emil C. Lupu, Luis Muñoz-González, Rabih Mohsen, Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detection arXiv: Cryptography and Security. ,(2016)
Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, Vaibhav Rastogi, DroidNative: Automating and optimizing detection of Android native code malware variants Computers & Security. ,vol. 65, pp. 230- 246 ,(2017) , 10.1016/J.COSE.2016.11.011
Qudsia Jamil, Munam Ali Shah, Analysis of machine learning solutions to detect malware in android international conference on innovative computing technology. pp. 226- 232 ,(2016) , 10.1109/INTECH.2016.7845073
Matthew Leeds, Travis Atkison, Preliminary Results of Applying Machine Learning Algorithms to Android Malware Detection international conference on computational science. pp. 1070- 1073 ,(2016) , 10.1109/CSCI.2016.0204