Polarized distances between quantum states and observables

作者: D. A. Trifonov , S. G. Donev

DOI:

关键词: ObservableTheoretical physicsQuantum mechanicsPropositionTriangle inequalityQuantum stateElaborationMathematics

摘要: The proposition 1 is incomplete. In some of the examples D(a,b) may not obey triangle inequality. paper withdrawn for further elaboration.

参考文章(4)
J. P. Provost, G. Vallee, Riemannian structure on manifolds of quantum states Communications in Mathematical Physics. ,vol. 76, pp. 289- 301 ,(1980) , 10.1007/BF02193559
M. Raviculé, M. Casas, A. Plastino, Information and metrics in Hilbert space Physical Review A. ,vol. 55, pp. 1695- 1702 ,(1997) , 10.1103/PHYSREVA.55.1695
V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, A. Wünsche, Hilbert-Schmidt distance and non-classicality of states in quantum optics Journal of Modern Optics. ,vol. 47, pp. 633- 654 ,(2000) , 10.1080/09500340008233385
A. S. Kholevo, Probabilistic and statistical aspects of quantum theory North-Holland Pub. Co. , Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.. ,(1982)