Electrocardiogram classification using delay differential equations.

作者: Claudia Lainscsek , Terrence J. Sejnowski

DOI: 10.1063/1.4811544

关键词: Control theoryInterval (mathematics)ElectrocardiographyDiscriminative modelDelay differential equationAlgorithmMathematicsAtrial fibrillationTime seriesDynamical systemNonlinear system

摘要: Time series analysis with nonlinear delay differential equations (DDEs) reveals as well spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments electrocardiographic (ECG) recordings in order capture distinguishing features for different heart conditions such normal beat, congestive failure, and atrial fibrillation. The number terms delays model nonlinearity have be selected that are most discriminative. form best separates three classes was chosen by exhaustive search up third polynomials. Such an approach can provide deep insight into nature since linear a correspond main time-scales signal related couplings between harmonic parts. DDEs able detect fibrillation accuracy 72%, failure 88%, beat 97% from 5 min ECG, much shorter time interval than required achieve comparable performance other methods.

参考文章(37)
Floris Takens, Detecting strange attractors in turbulence Lecture Notes in Mathematics. ,vol. 898, pp. 366- 381 ,(1981) , 10.1007/BFB0091924
Jose Alvarez-Ramirez, Eduardo Rodriguez, Juan Carlos Echeverría, Delays in the human heartbeat dynamics Chaos. ,vol. 19, pp. 028502- ,(2009) , 10.1063/1.3152005
L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as complex system Nature Communications. ,vol. 2, pp. 468- 468 ,(2011) , 10.1038/NCOMMS1476
A. N. Kolmogorov, Yu. A. Rozanov, On Strong Mixing Conditions for Stationary Gaussian Processes Theory of Probability & Its Applications. ,vol. 5, pp. 204- 208 ,(1960) , 10.1137/1105018
Boris P. Bezruchko, Dmitry A. Smirnov, Constructing nonautonomous differential equations from experimental time series Physical Review E. ,vol. 63, pp. 016207- ,(2000) , 10.1103/PHYSREVE.63.016207
N. H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw, Geometry from a Time Series Physical Review Letters. ,vol. 45, pp. 712- 716 ,(1980) , 10.1103/PHYSREVLETT.45.712
Jing Hu, Jianbo Gao, Wen-wen Tung, Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos. ,vol. 19, pp. 028506- ,(2009) , 10.1063/1.3152007
LUIS A. AGUIRRE, S. A. BILLINGS, Improved structure selection for nonlinear models based on term clustering International Journal of Control. ,vol. 62, pp. 569- 587 ,(1995) , 10.1080/00207179508921557
C.L. Nikias, M.R. Raghuveer, Bispectrum estimation: A digital signal processing framework Proceedings of the IEEE. ,vol. 75, pp. 869- 891 ,(1987) , 10.1109/PROC.1987.13824
L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer, Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Optics Express. ,vol. 20, pp. 3241- 3249 ,(2012) , 10.1364/OE.20.003241