作者:
关键词: Parameter space 、 Stable equilibrium 、 Oscillation 、 Resonance 、 Current (mathematics) 、 Physiological model 、 Mathematical physics 、 Nucleus reticularis thalami 、 Bifurcation diagram 、 Physics
摘要: We add a slow hyperpolarization-activated inward current I $\_{\text{H}}$ = g m (v - v ) to our previous model of rebound bursting (Hindmarsh & Rose Phil. Trans. R. Soc. Lond. B 346, 129-150 (1994a)) give four-dimensional physiological model, and corresponding the model. The generates periodic \`bursts bursts' or \`spindles' resembling those recorded experimentally in thalamocortical (TC) neurons. is simplified two-dimensional system having limit cycle which corresponds spindle oscillation Analysis stability this allows us divide parameter space slope ( $\gamma \_{m\_{\text{H}}}$ shift $\theta parameters $\_{\text{H}\_{\infty}}$ (v) into regions spindles continuous bursting. This enables determine values required for spindling explain observed effects noradrenaline. Next we examine whether cell at stable equilibrium point can be driven by applying sinusoidal input resonant frequency. done averaging equations these averaged shows how , change when input. choose spindle. show that if modified include voltage-dependent time constant spindles, similar TC cells, obtained with small Ca $^{2+}$ -activated K $^{+}$ current. Finally knowledge form bifurcation diagram conditions resonance leads new suggestion roles GABA $\_{\text{A}}$ $_{\text{B}}$ inhibitory postsynaptic potentials cells are neurons nucleus reticularis thalami.