Symmetries of ultralocal quantum field theories

作者: B. DeFacio , C. L. Hammer

DOI: 10.1063/1.523394

关键词: Operator (physics)PairingRotational symmetryField (physics)Quantum field theorySupersymmetryPhysicsField theory (psychology)Classical mechanicsSymmetry (physics)Mathematical physicsStatistical and Nonlinear Physics

摘要: The symmetries of the gradient free ultralocal model quantum field theories are studied. internal parameter λ introduced by J. R. Klauder is replaced an r‐component vector and used to obtain r‐vector operator φ. Then many‐body models with translational rotational symmetry set up partitioning into N, 3‐d ’’relative coordinates.’’ Hartree‐type 1/N limits studied in this found be accurate only if contributions from ‖χ‖≳≳0 negligible. A brief sketch given how produce more general UN pairing interaction models.

参考文章(15)
B. DeFacio, C. L. Hammer, Bilinear quantum field theories and their coherent states Journal of Mathematical Physics. ,vol. 17, pp. 267- 281 ,(1976) , 10.1063/1.522892
John R. Klauder, Exponential Hilbert Space: Fock Space Revisited Journal of Mathematical Physics. ,vol. 11, pp. 609- 630 ,(1970) , 10.1063/1.1665176
John R Klauder, Ultralocal spinor field models Annals of Physics. ,vol. 79, pp. 111- 130 ,(1973) , 10.1016/0003-4916(73)90285-6
L. I. Schiff, Lattice-Space Quantization of a Nonlinear Field Theory Physical Review. ,vol. 92, pp. 766- 779 ,(1953) , 10.1103/PHYSREV.92.766
H. D. I. Abarbanel, J. R. Klauder, J. G. Taylor, Green's Functions for Rotationally Symmetric Models Physical Review. ,vol. 152, pp. 1198- 1206 ,(1966) , 10.1103/PHYSREV.152.1198
John R. Klauder, ULTRALOCAL SCALAR FIELD MODELS. Communications in Mathematical Physics. ,vol. 18, pp. 307- 318 ,(1970) , 10.1007/BF01649449
J. R. Klauder, J. McKenna, E. J. Woods, Direct-Product Representations of the Canonical Commutation Relations Journal of Mathematical Physics. ,vol. 7, pp. 822- 828 ,(1966) , 10.1063/1.1931213
Marcos Moshinsky, Bases for the Irreducible Representations of the Unitary Groups and Some Applications Journal of Mathematical Physics. ,vol. 4, pp. 1128- 1139 ,(1963) , 10.1063/1.1704043
Shau-Jin Chang, Quantum fluctuations in aφ4field theory. I. Stability of the vacuum Physical Review D. ,vol. 12, pp. 1071- 1088 ,(1975) , 10.1103/PHYSREVD.12.1071