作者: Kalvis Apsītis , Rūsinš Freivalds , Mārtinš Krikis , Raimonds Simanovskis , Juris Smotrovs
关键词: Property (philosophy) 、 Tuple 、 Identification (information) 、 Mathematics 、 Recursive functions 、 Combinatorics
摘要: J.Barzdin [Bar74] has proved that there are classes of total recursive functions which EX-identifiable but their union is not. We prove no 3 U1, U2, U3 such U1∪U2,U1∪U3 and U2∪U3 would be in EX U1∪U2∪U3∉ EX. For FIN-identification with the above-mentioned property 4 U3, U4 all unions triples these identifiable identification more than p minchanges a (2p+2−1)-tuple do exist (2p+2)-tuple properly.