Eigenstate thermalization hypothesis through the lens of autocorrelation functions

作者: L. Vidmar , F. Heidrich-Meisner , D. Jansen , C. Schönle

DOI:

关键词: Eigenstate thermalization hypothesisMathematical physicsEigenvalues and eigenvectorsLattice (order)AnsatzObservableFermionQuantumAmplitudePhysics

摘要: Matrix elements of observables in eigenstates generic Hamiltonians are described by the Srednicki ansatz within eigenstate thermalization hypothesis (ETH). We study a quantum chaotic spin-fermion model one-dimensional lattice, which consists spin-1/2 XX chain coupled to single itinerant fermion. In our study, we focus on translationally invariant including charge and energy current, thereby also connecting ETH with transport properties. ask extent one can use autocorrelation functions extract specific properties their matrix elements. Considering Hilbert-Schmidt norm one, first demonstrate validity remarkable accuracy. A particular emphasis is analysis structure offdiagonal $|\langle \alpha | \hat O \beta \rangle|^2$ limit small differences $\omega = E_\beta - E_\alpha$. Removing dominant exponential suppression \rangle|^2$, find that: (i) current elements, contrast all other under investigation, exhibit no additional system-size dependence, (ii) several Drude-like Lorentzian frequency whose amplitude width scales linearly lattice size, eventually suggesting ballistic for large systems. then show how this information be extracted from as well. Finally, complemented numerical fluctuation-dissipation relation bulk spectrum. identify regime $\omega$ well-known valid high accuracy finite

参考文章(71)
C. Karrasch, J. H. Bardarson, J. E. Moore, Finite-temperature dynamical density matrix renormalization group and the Drude weight of spin-1/2 chains. Physical Review Letters. ,vol. 108, pp. 227206- ,(2012) , 10.1103/PHYSREVLETT.108.227206
Peter Reimann, Eigenstate thermalization: Deutsch’s approach and beyond New Journal of Physics. ,vol. 17, pp. 055025- ,(2015) , 10.1088/1367-2630/17/5/055025
S. A. Trugman, H. Fehske, Numerical Solution of the Holstein Polaron Problem passive and active network measurement. ,vol. 103, pp. 393- 461 ,(2007) , 10.1007/978-1-4020-6348-0_10
W. Beugeling, R. Moessner, Masudul Haque, Finite-size scaling of eigenstate thermalization. Physical Review E. ,vol. 89, pp. 042112- ,(2014) , 10.1103/PHYSREVE.89.042112
Hyungwon Kim, Tatsuhiko N. Ikeda, David A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis Physical Review E. ,vol. 90, pp. 052105- ,(2014) , 10.1103/PHYSREVE.90.052105
Lea F. Santos, Aditi Mitra, Domain wall dynamics in integrable and chaotic spin-1/2 chains Physical Review E. ,vol. 84, pp. 016206- ,(2011) , 10.1103/PHYSREVE.84.016206
Fabian H. L. Essler, Stefano Evangelisti, Maurizio Fagotti, Dynamical correlations after a quantum quench. Physical Review Letters. ,vol. 109, pp. 247206- ,(2012) , 10.1103/PHYSREVLETT.109.247206
Toshiya Kinoshita, Trevor Wenger, David S. Weiss, A quantum Newton's cradle Nature. ,vol. 440, pp. 900- 903 ,(2006) , 10.1038/NATURE04693
Mark Srednicki, The approach to thermal equilibrium in quantized chaotic systems Journal of Physics A. ,vol. 32, pp. 1163- 1175 ,(1999) , 10.1088/0305-4470/32/7/007