Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine

作者: Thore Graepel , Joaquin Quiñonero-Candela , Thomas Borchert , Ralf Herbrich

DOI:

关键词: Artificial intelligenceSearch advertisingMessage passingSearch engineClick-through rateBest-first searchPruning (decision trees)Naive Bayes classifierComputer scienceMachine learningSearch algorithmData mining

摘要: … While the prediction of CTR is essentially an inference problem, the performance of the ad selection system will be measured in terms of the decisions made. Moreover, since the CTR …

参考文章(13)
Thomas P. Minka, Rosalind Picard, A family of algorithms for approximate bayesian inference Massachusetts Institute of Technology. ,(2001)
Damien Ernst, Arthur Louette, Introduction to Reinforcement Learning MIT Press. ,(1998)
Bianca Zadrozny, Charles Elkan, Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers international conference on machine learning. pp. 609- 616 ,(2001)
David J. Hand, Keming Yu, Idiot's Bayes—Not So Stupid After All? International Statistical Review. ,vol. 69, pp. 385- 398 ,(2001) , 10.1111/J.1751-5823.2001.TB00465.X
Deepak Agarwal, Bee-Chung Chen, Regression-based latent factor models Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '09. pp. 19- 28 ,(2009) , 10.1145/1557019.1557029
Matthew Richardson, Ewa Dominowska, Robert Ragno, Predicting clicks: estimating the click-through rate for new ads the web conference. pp. 521- 530 ,(2007) , 10.1145/1242572.1242643
Cheng-tao Chu, Sang Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Kunle Olukotun, Andrew Ng, None, Map-Reduce for Machine Learning on Multicore neural information processing systems. ,vol. 19, pp. 281- 288 ,(2006)
A.G. Barto, R.S. Sutton, Reinforcement Learning: An Introduction ,(1988)
David H. Stern, Ralf Herbrich, Thore Graepel, Matchbox Proceedings of the 18th international conference on World wide web - WWW '09. pp. 111- 120 ,(2009) , 10.1145/1526709.1526725