Transport properties of SPEEK nanocomposite proton conducting membranes: Optimization of additives content by response surface methodology

作者: Hamid Ilbeygi , A Mayahi , AF Ismail , MM Nasef , J Jaafar

DOI: 10.1016/J.JTICE.2014.08.005

关键词: MethanolCentral composite designPolymer chemistryNanocompositeSelectivityResponse surface methodologyDirect methanol fuel cellConductivityMembraneMaterials scienceChemical engineering

摘要: Abstract The addition of Cloisite 15A ® Clay (CC) and 2,4,6-triaminopyrimidine (TAP) to enhance the transport properties sulfonated poly ether ketone (SPEEK) nanocomposite membrane, which is a promising candidate for direct methanol fuel cell (DMFC) application, was investigated. central composite design (CCD) response surface method (RSM) utilized optimize content incorporated additives in SPEEK membrane predict its performance. Three models correlating independent parameters (contents added CC TAP) responses (proton conductivity, permeability selectivity) were developed verified with experimental data. optimum achieving highest performance represented by 2.56 × 10 −6  (cm/s), proton conductivity 17.12 (mS/cm 2 ) selectivity 55773.7 sS/cm 3 obtained at contents TAP 2.92 5.68 wt%, respectively. deviation corresponding data found be an acceptable range, confirming suitability RSM predicting optimizing contents. showed improved structure as revealed field emission scanning electron microscopy (FESEM).

参考文章(53)
Raymond H Myers, Douglas C Montgomery, G Geoffrey Vining, Connie M Borror, Scott M Kowalski, None, Response Surface Methodology: A Retrospective and Literature Survey Journal of Quality Technology. ,vol. 36, pp. 53- 77 ,(2004) , 10.1080/00224065.2004.11980252
S.S. Mohtar, A.F. Ismail, T. Matsuura, Preparation and characterization of speek/ mmt-sta composite membrane for DMFC application Journal of Membrane Science. ,vol. 371, pp. 10- 19 ,(2011) , 10.1016/J.MEMSCI.2011.01.009
Juhana Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC Journal of Membrane Science. ,vol. 382, pp. 202- 211 ,(2011) , 10.1016/J.MEMSCI.2011.08.016
A.L. Ahmad, S.C. Low, S.R. Abd Shukor, A. Ismail, Optimization of membrane performance by thermal-mechanical stretching process using responses surface methodology (RSM) Separation and Purification Technology. ,vol. 66, pp. 177- 186 ,(2009) , 10.1016/J.SEPPUR.2008.11.007
Z.-M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.-Q. Lei, Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites† Advanced Materials. ,vol. 19, pp. 852- 857 ,(2007) , 10.1002/ADMA.200600703
Brett Libby, W. H. Smyrl, E. L. Cussler, Polymer-zeolite composite membranes for direct methanol fuel cells Aiche Journal. ,vol. 49, pp. 991- 1001 ,(2003) , 10.1002/AIC.690490416
Corneliu Cojocaru, Grażyna Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration Journal of Membrane Science. ,vol. 298, pp. 56- 70 ,(2007) , 10.1016/J.MEMSCI.2007.04.001
José M. Cervantes-Uc, Juan V. Cauich-Rodríguez, Humberto Vázquez-Torres, Luis F. Garfias-Mesías, Donald R. Paul, Thermal degradation of commercially available organoclays studied by TGA-FTIR Thermochimica Acta. ,vol. 457, pp. 92- 102 ,(2007) , 10.1016/J.TCA.2007.03.008
Peixiang Xing, Gilles P Robertson, Michael D Guiver, Serguei D Mikhailenko, Keping Wang, Serge Kaliaguine, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes Journal of Membrane Science. ,vol. 229, pp. 95- 106 ,(2004) , 10.1016/J.MEMSCI.2003.09.019