f(α) multifractal spectrum at strong and weak disorder

作者: E. Cuevas

DOI: 10.1103/PHYSREVB.68.024206

关键词: PhysicsThermodynamic limitMultifractal systemFractalSpectrum (functional analysis)Size dependenceQuantum mechanicsCoupling strengthSingularityAmplitude

摘要: The system size dependence of the multifractal spectrum $f(\ensuremath{\alpha})$ and its singularity strength $\ensuremath{\alpha}$ is investigated numerically. We focus on one-dimensional (1D) 2D disordered systems with long-range random hopping amplitudes in both strong weak disorder regime. At macroscopic limit, it shown that parabolic In case disorder, other hand, strongly deviates from parabolicity. Within our numerical uncertainties has been found all corrections to form vanish at some finite value coupling strength.

参考文章(36)
C Castellani, L Peliti, Multifractal wavefunction at the localisation threshold Journal of Physics A. ,vol. 19, pp. 315- 332 ,(1986) , 10.1088/0305-4470/19/8/004
E. Cuevas, V. Gasparian, M. Ortuño, Anomalously large critical regions in power-law random matrix ensembles. Physical Review Letters. ,vol. 87, pp. 056601- 056601 ,(2001) , 10.1103/PHYSREVLETT.87.056601
D. A. Parshin, H. R. Schober, Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder Physical Review B. ,vol. 57, pp. 10232- 10235 ,(1998) , 10.1103/PHYSREVB.57.10232
Imre Varga, Daniel Braun, Critical statistics in a power-law random-banded matrix ensemble Physical Review B. ,vol. 61, ,(2000) , 10.1103/PHYSREVB.61.R11859
Ashvin Chhabra, Roderick V. Jensen, Direct determination of the f(α) singularity spectrum Physical Review Letters. ,vol. 62, pp. 1327- 1330 ,(1989) , 10.1103/PHYSREVLETT.62.1327