Possibilistic rough fuzzy C-means algorithm in data clustering and image segmentation

作者: B. K. Tripathy , Anurag Tripathy , Kosireddy Govinda Rajulu

DOI: 10.1109/ICCIC.2014.7238506

关键词: Fuzzy clusteringAlgorithmComputer scienceFuzzy setFuzzy classificationFuzzy set operationsDefuzzificationMembership functionRough setFuzzy number

摘要: Several data clustering techniques have been developed in literature. It has observed that the algorithms by using imprecise models like rough sets, fuzzy sets and intuitionistic better than crisp algorithms. Also, hybrid provide far individual models. such a combination of set introduced Zadeh, Pawlak Atanassov. Notable among them being Rough Fuzzy C-Means (RFCM) Mitra et al c-means algorithm (RIFCM) studied Tripathy Krishnapuram Keller basic probabilistic flavour; for example due to presence constraint on memberships used (FCM) algorithm. So, they concept possibilistic approach C-means (PFCM) Another PFCM is Pal al. In this paper, we improve (PRCM) Anuradha et, introduce new algorithm, which call as (PRFCM) compare its efficiency with improved PRCM PRFCM establish experimentally comparatively corresponding RCM We perform experimental analysis taking different types numerical datasets images inputs standard accuracy measures DB D-index.

参考文章(18)
B. K. Tripathy, Anurag Tripathy, K. Govindarajulu, Rohan Bhargav, On Kernel Based Rough Intuitionistic Fuzzy C-means Algorithm and a Comparative Analysis Springer, Cham. pp. 349- 359 ,(2014) , 10.1007/978-3-319-07353-8_41
Pradipta Maji, Sankar K. Pal, RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets Fundamenta Informaticae. ,vol. 80, pp. 475- 496 ,(2007) , 10.5555/2367421.2367428
Krassimir T. Atanassov, Intuitionistic fuzzy sets Fuzzy Sets and Systems. ,vol. 20, pp. 87- 96 ,(1986) , 10.1016/S0165-0114(86)80034-3
Pawan Lingras, Chad West, None, Interval Set Clustering of Web Users with Rough K -Means intelligent information systems. ,vol. 23, pp. 5- 16 ,(2004) , 10.1023/B:JIIS.0000029668.88665.1A
DIDIER DUBOIS, HENRI PRADE, ROUGH FUZZY SETS AND FUZZY ROUGH SETS International Journal of General Systems. ,vol. 17, pp. 191- 209 ,(1990) , 10.1080/03081079008935107
Enrique H. Ruspini, A new approach to clustering Information & Computation. ,vol. 15, pp. 22- 32 ,(1969) , 10.1016/S0019-9958(69)90591-9
David L. Davies, Donald W. Bouldin, A Cluster Separation Measure IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 1, pp. 224- 227 ,(1979) , 10.1109/TPAMI.1979.4766909
S. Mitra, H. Banka, W. Pedrycz, Rough–Fuzzy Collaborative Clustering systems man and cybernetics. ,vol. 36, pp. 795- 805 ,(2006) , 10.1109/TSMCB.2005.863371